3.7 Architecture of Transformers

1.2.4 Transformers

A transformer is a deep learning model that generates significant weights to each part of the input data through using mechanisms of self-attention and cross-attention.

It is used primarily in the fields of natural language processing (NLP), computer vision (CV), and speech processing.

• TimeLine of Key milestones in the development of transformer * Kai HanFeb2022

Vanilla Transformer

2017.6 | Transformer

Solely based on attention mechanism, the Transformer is proposed and shows great performance on NLP tasks.

2020.5 | GPT-3

A huge transformer with 170B parameters, takes a big step towards general NLP model.

2020.7 | iGPT

The transformer model for NLP can also be used for image pretraining.

End of 2020 | IPT/SETR/CLIP

Applications of transformer model on low-level vision, segmentation and multimodality tasks, respectively.

2018.10 | BERT

Pre-training transformer models begin to be dominated in the field of NLP.

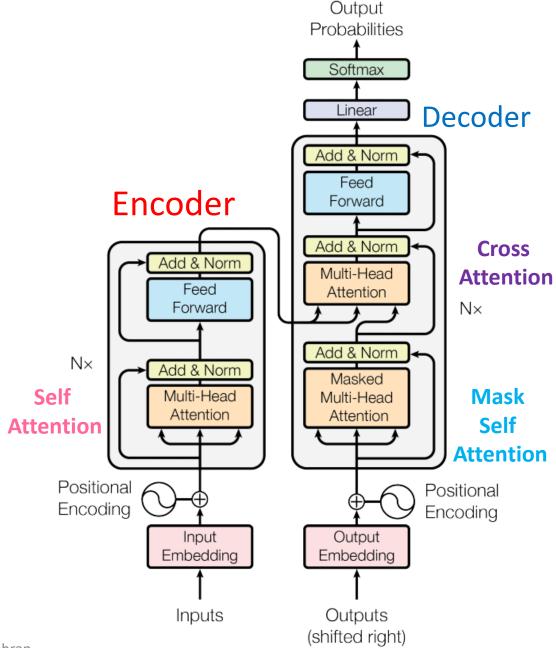
2020.5 | DETR

A simple yet effective framework for high-level vision by viewing object detection as a direct set prediction problem.

2020.10 | ViT

Pure transformer architectures work well for visual recognition.

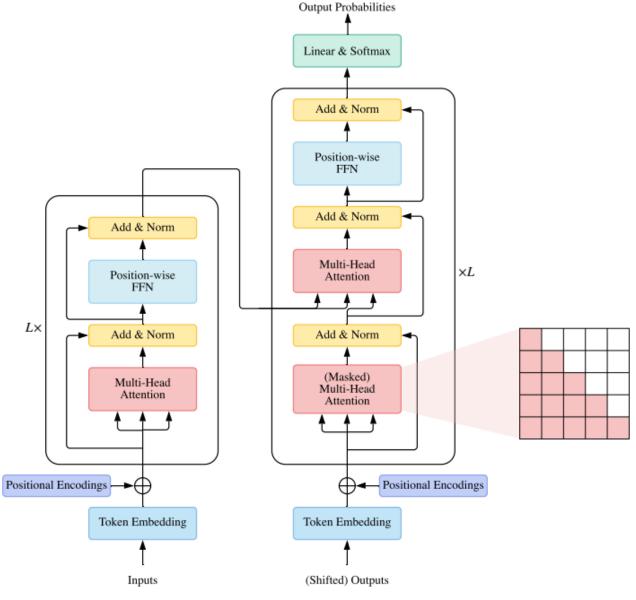
2021 | ViT Variants


Variants of ViT models, e.g., DeiT, PVT, TNT, and Swin.

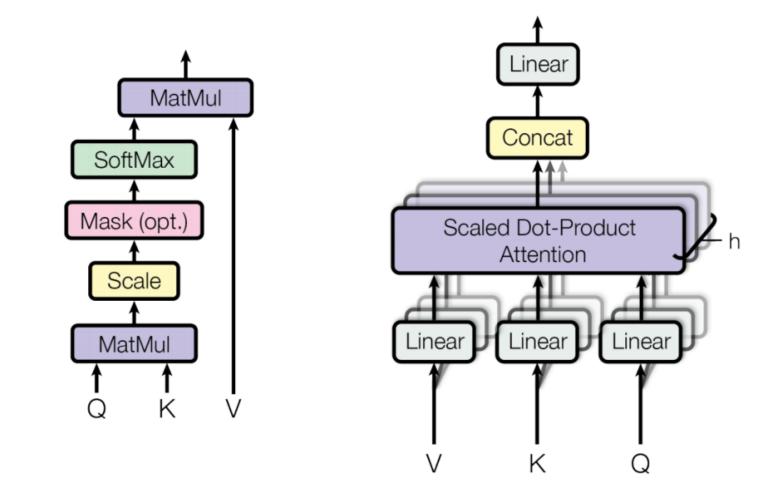
The vision transformer models are marked in red.

Vanilla Transformer

*Vaswani...2017 (Attention is all you need)


- a sequence-to-sequence model and consists of an encoder and a decoder, each of which is a stack of "N" identical blocks each encoder block is mainly composed of a multi-head self-attention module and a position-wise feed-forward network (FFN). In this work, the encoder is composed of a stack of N=6 identical layers.
- For building a deeper model, a residual connection is employed around each module, followed by Layer Normalization module.
- Compared to the encoder blocks, decoder blocks additionally insert cross-attention modules between the multi-head self-attention modules and the position-wise FFNs. In this work, the decoder is also composed of a stack of N=6 identical layers.
- Furthermore, the self-attention modules in the decoder are adapted to prevent each position from attending to subsequent positions.

The key modules of the vanilla Transformer


1. Attention Modules

- Single Attention
- Multi Head-Attention
 - Self-attention
 - Masked Self-attention
 - Cross-attention
- 2. Position-wise FFN (Feed Forward Network)
- 3. Residual Connection and Normalization.
- 4. Position Encodings.

Overview of vanilla Transformer architecture

In this work we employ h=8 parallel attention layers, or heads

Single-attention function Multi-head attention function.

1. Attention Modules

Single attention function

Transformer adopts attention mechanism with Query-Key-Value (QKV) model. Given the packed matrix representations of queries , keys , and values , the scaled dot-product attention used by Transformer is given by

$$A = softmax(\frac{QK^T}{\sqrt{D_k}})$$
, $Q \in R^{N \times D_k}$, $K \in R^{M \times D_k}$, $V \in R^{M \times D_v}$

N: length of Query, M: length of Keys(or values)- D_k : Dimension of query and key D_v : Dimension of values

- Softmax is applied in a row-wise manner.
- The dot-products of queries and keys are divided by $\sqrt{D_k}$ to alleviate gradient vanishing problem of the softmax function.

Multi head attention function

Instead of simply applying a single attention function, Transformer uses multi-head attention, where the original queries, keys and values are with H different sets of learned projections.

$$MultiHeadAtn(Q, K, V) = Concat(head_1, \cdots, head_H)W^o$$

$$head_i = Attention(QW_i^Q, KW_i^K, VW_i^V) \ i = 1, 2, ..., H$$

The model then concatenates all the outputs.

Three types of attention (in terms of the source of queries and key-value pairs).

• Self-attention

In Transformer encoder, we set Q = K = V = X, where X is the outputs of the previous layer.

Masked Self-attention

In the Transformer decoder, the self-attention is restricted such that queries at each position can only attend to all key-value pairs up to and including that position.

To enable parallel training, this is typically done by applying a mask function to the unnormalized attention matrix $\hat{A} = \exp(\frac{QK}{\sqrt{D_k}})$ where the illegal positions are masked out by setting $\hat{A}_{ij} = -\infty$ if i < j This kind of self-attention is often referred to as autoregressive or causal attention

Cross-attention

The queries are projected from the outputs of the previous (decoder) layer, whereas the keys and values are projected using the outputs of the encoder.

2. Position-wise FFN.

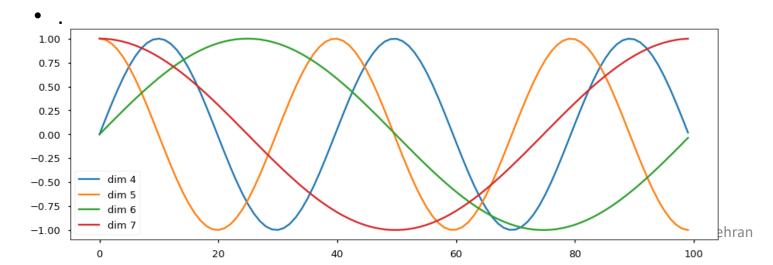
The position-wise FFN is a fully connected feed-forward module that operates separately and identically on each position

$$FFN(H') = ReLU(H'W^1 + b^1)W^2 + b^2$$

where H' is the outputs of previous layer, and $W^1 \in R^{D_m \times D_f}$, $W^2 \in R^{D_f \times D_m}$, $b^1 \in R^{D_f}$, $b^2 \in R^{D_m}$ are trainable parameters. Typically the intermediate dimension D_f the FFN is set to be larger than D_m

3. Residual Connection and Normalization

In order to build a deep model, Transformer employs a residual connection [49] around each module, followed by Layer Normalization [4]. For instance, each Transformer encoder block may be written as


where SelfAtention(\cdot) denotes self attention module and LayerNorm(\cdot) denotes the layer normalization operation

4. Position Encodings.

Since Transformer doesn't introduce recurrence or convolution, it is ignorant of positional information (especially for the encoder). Thus additional positional representation is needed to model the ordering of tokens

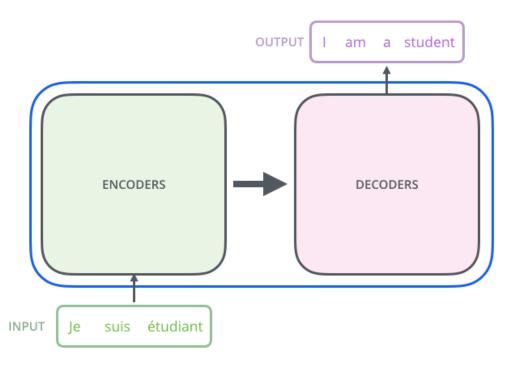
Positional Encoding

- Since our model contains no recurrence and no convolution, in order for the model to make use of the order
 of the sequence, we must inject some information about the relative or absolute position of the tokens in
 the sequence. To this end, we add "positional encodings" to the input embeddings at the bottoms of the
 encoder and decoder stacks. The positional encodings have the same dimension dmodel
- as the embeddings, so that the two can be summed. There are many choices of positional encodings, learned and fixed (cite).
- In this work, we use sine and cosine functions of different frequencies: PE(pos,2i)=sin(pos/100002i/dmodel)
- PE(pos,2i+1)=cos(pos/100002i/dmodel)
- where pos is the position and i is the dimension. That is, each dimension of the positional encoding corresponds to a sinusoid. The wavelengths form a geometric progression from 2π to $10000 \cdot 2\pi$. We chose this function because we hypothesized it would allow the model to easily learn to attend by relative positions, since for any fixed offset k, PEpos+k can be represented as a linear function of PEpos.
- In addition, we apply dropout to the sums of the embeddings and the positional encodings in both the encoder and decoder stacks. For the base model, we use a rate of Pdrop=0.1

Position-wise Feed-Forward Networks

In addition to attention sub-layers, each of the layers in our encoder and decoder contains a fully connected feed-forward network, which is applied to each position separately and identically.

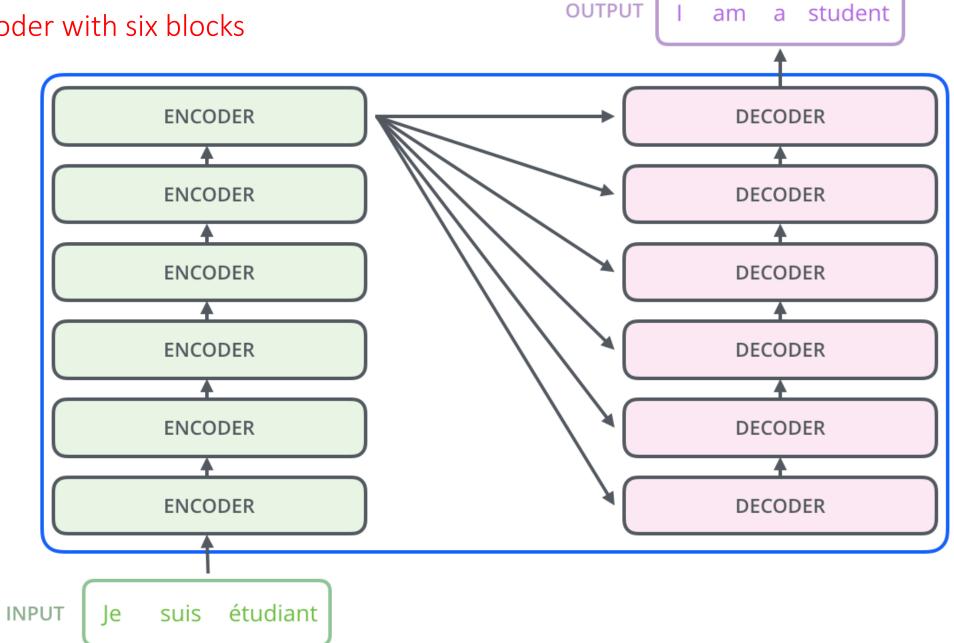
This consists of two linear transformations with a ReLU activation in between.

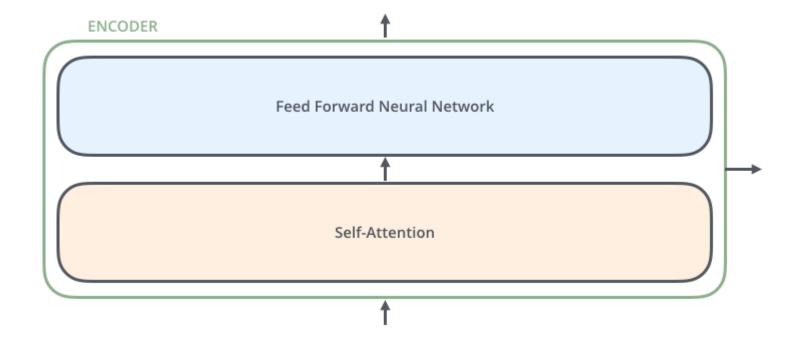

$$FFN(x)=max(0,xW1+b1)W2+b2$$

While the linear transformations are the same across different positions, they use different parameters from layer to layer.

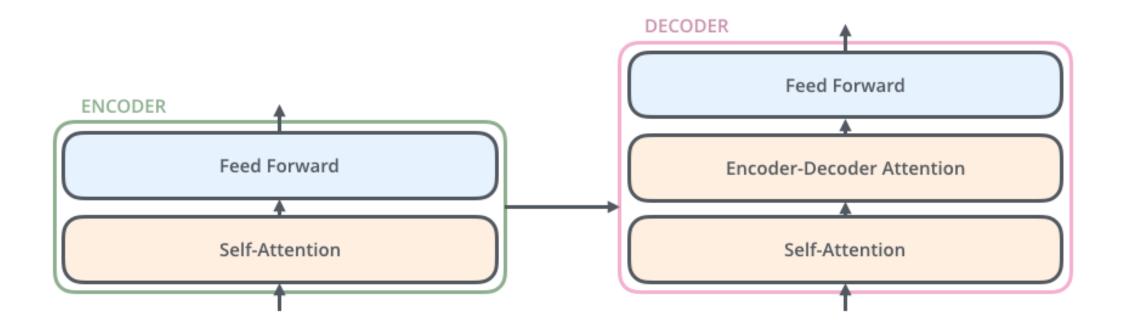
Another way of describing this is as two convolutions with kernel size 1.

The dimensionality of input and output is dmodel=512, and the inner-layer has dimensionality dff=2048.

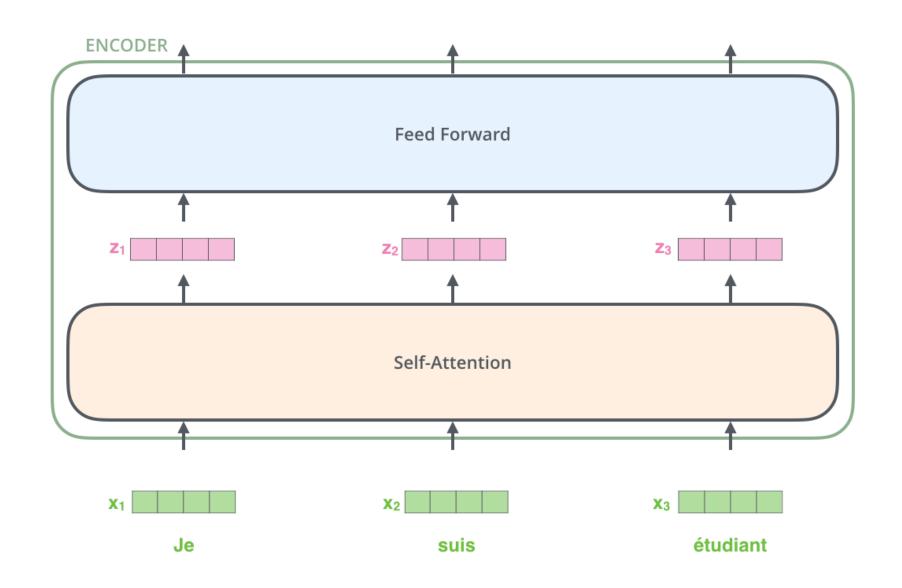



Jay Alammar

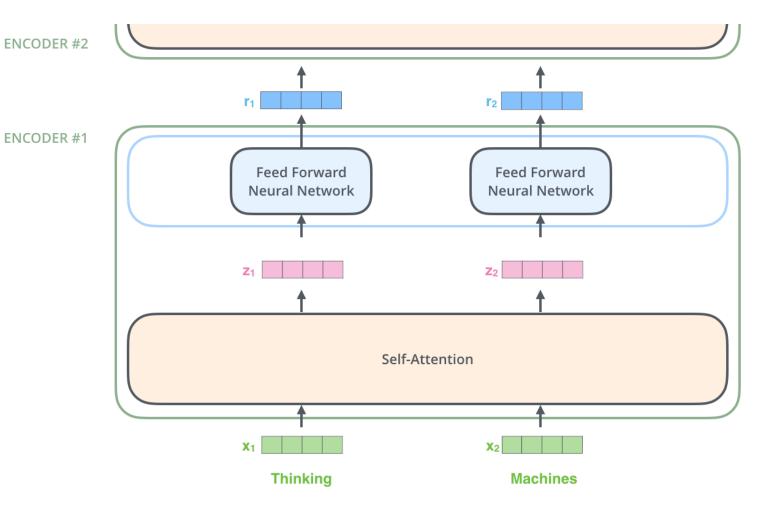
Visualizing machine learning one concept at a time.


@JayAlammar on Twitter. YouTube Channel

Encoder and Decoder with six blocks



Encoder and Decoder with one block

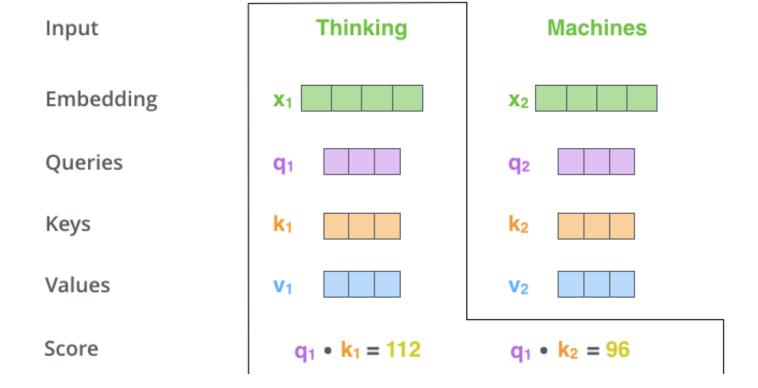


Bringing The Tensors Into The Picture

Now We're Encoding!

The word at each position passes through a selfattention process. Then, they each pass through a feed-forward neural network -- the exact same network with each vector flowing through it separately.

Ahmad Kalhor-University of Tehran


Self-Attention in Detail

Input

 X_2 Embedding Multiplying x1 by the WQ weight matrix produces q1, the "query" vector WQ Queries associated with that word. We end up creating a "query", a "key", and a "value" projection of each WK Keys word in the input sentence. W۷ Values

Thinking

Machines

Input

Embedding

Queries

Keys

Values

Score

Divide by 8 ($\sqrt{d_k}\,$)

Softmax

Thinking

X1

q₁

k₁

V₁

 $q_1 \cdot k_1 = 112$

14

0.88

Machines

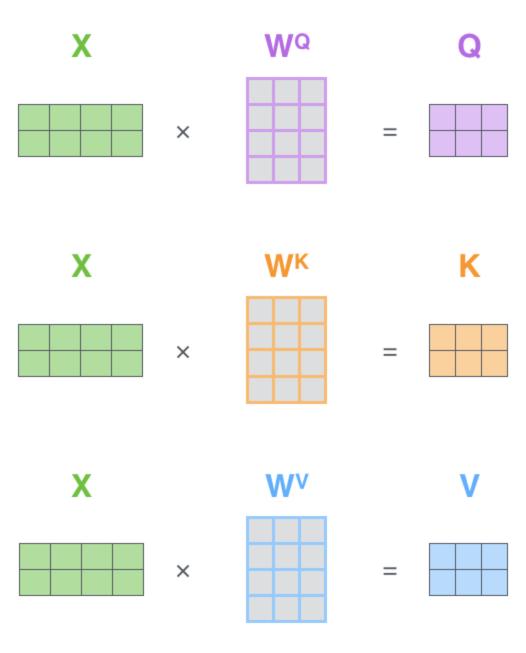
X2

q₂

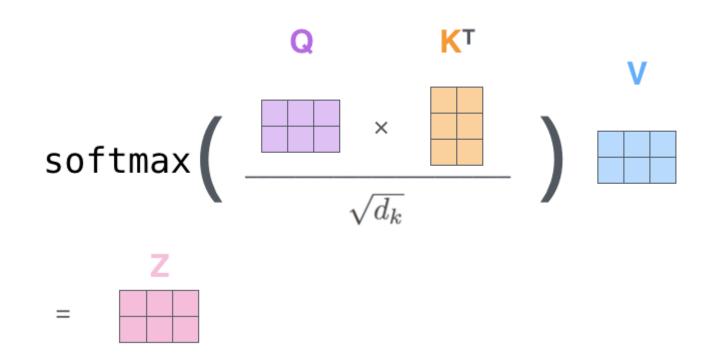
k₂

V₂

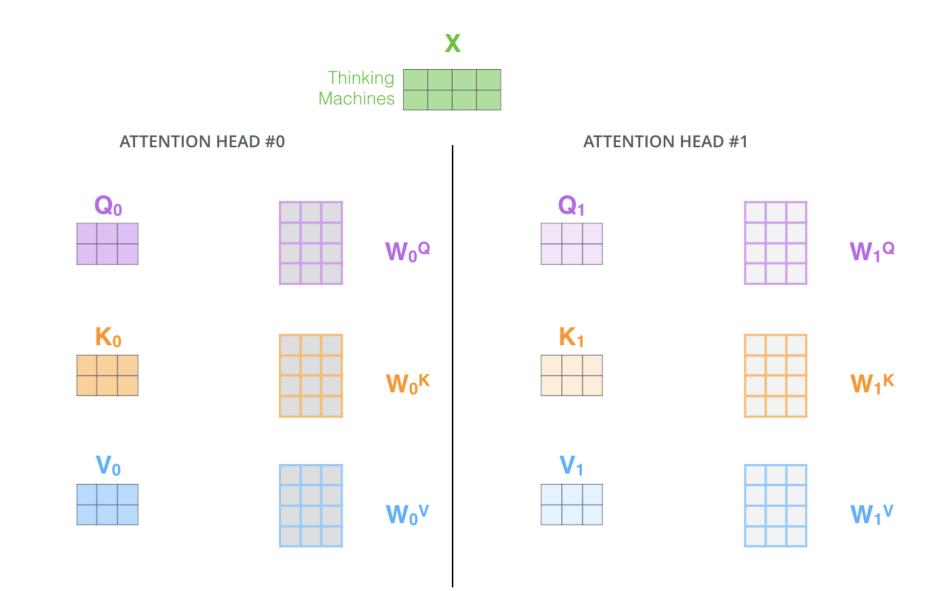
 $q_1 \cdot k_2 = 96$

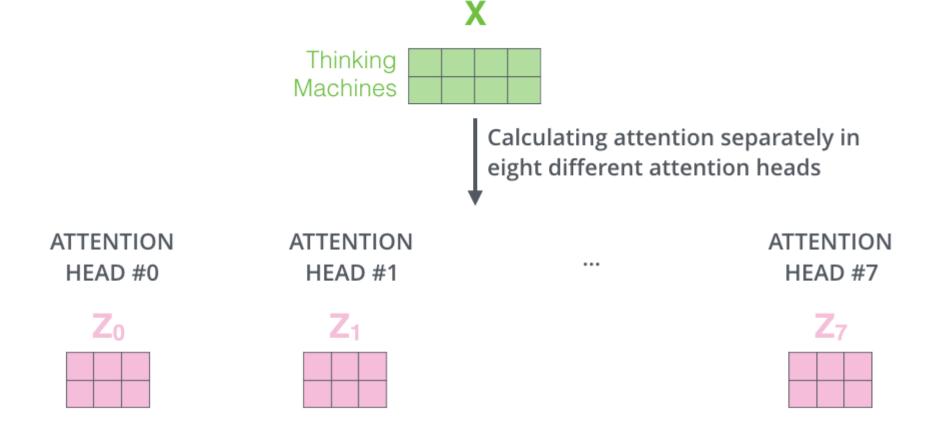

12

0.12


Input	Thinking	Machines
Embedding	X ₁	X ₂
Queries	q ₁	q ₂
Keys	k ₁	k ₂
Values	V ₁	V ₂
Score	q ₁ • k ₁ = 112	q ₁ • k ₂ = 96
Divide by 8 ($\sqrt{d_k}$)	14	12
Softmax	0.88	0.12
Softmax X Value	V ₁	V ₂
Sum	Z 1	Z ₂

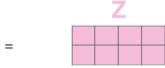
Matrix Calculation of Self-Attention


Every row in the X matrix corresponds to a word in the input sentence. We again see the difference in size of the embedding vector (512, or 4 boxes in the figure), and the q/k/v vectors (64, or 3 boxes in the figure)



The self-attention calculation in matrix form

The Beast With Many Heads


1) Concatenate all the attention heads

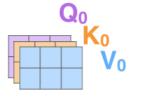
2) Multiply with a weight matrix W^o that was trained jointly with the model

Χ

3) The result would be the Z matrix that captures information from all the attention heads. We can send this forward to the FFNN

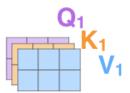
- 1) This is our input sentence*
- 2) We embed each word*
- 3) Split into 8 heads. We multiply X or R with weight matrices
- 4) Calculate attention using the resulting Q/K/V matrices
- 5) Concatenate the resulting Z matrices, then multiply with weight matrix W^o to produce the output of the layer

Thinking Machines


* In all encoders other than #0,

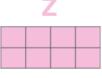
We start directly with the output of the encoder right below this one

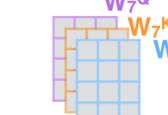
we don't need embedding.

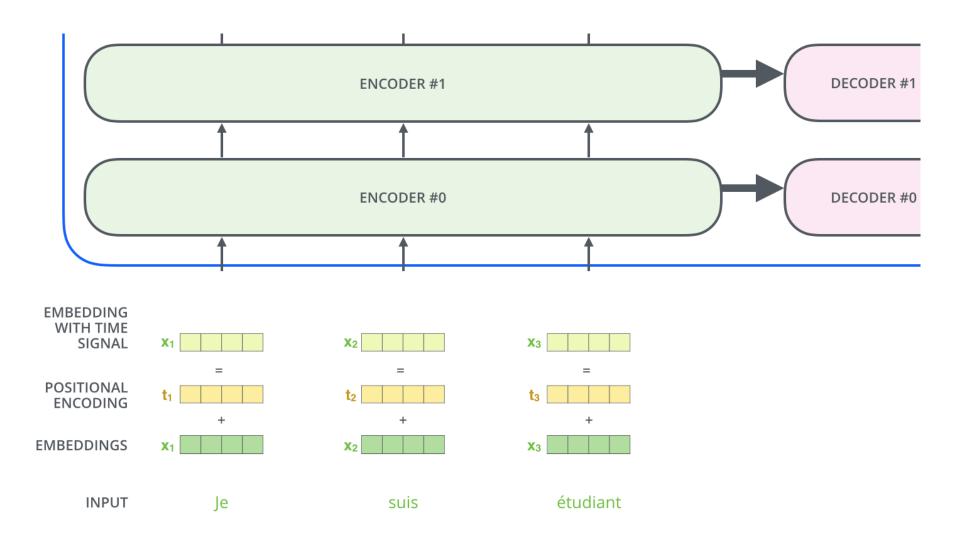


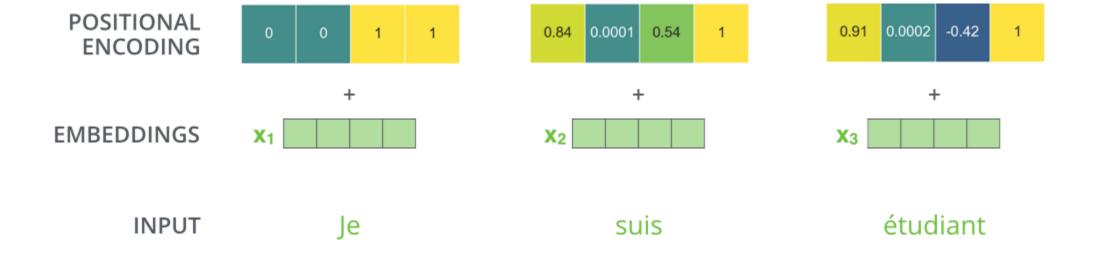
 W_0^Q



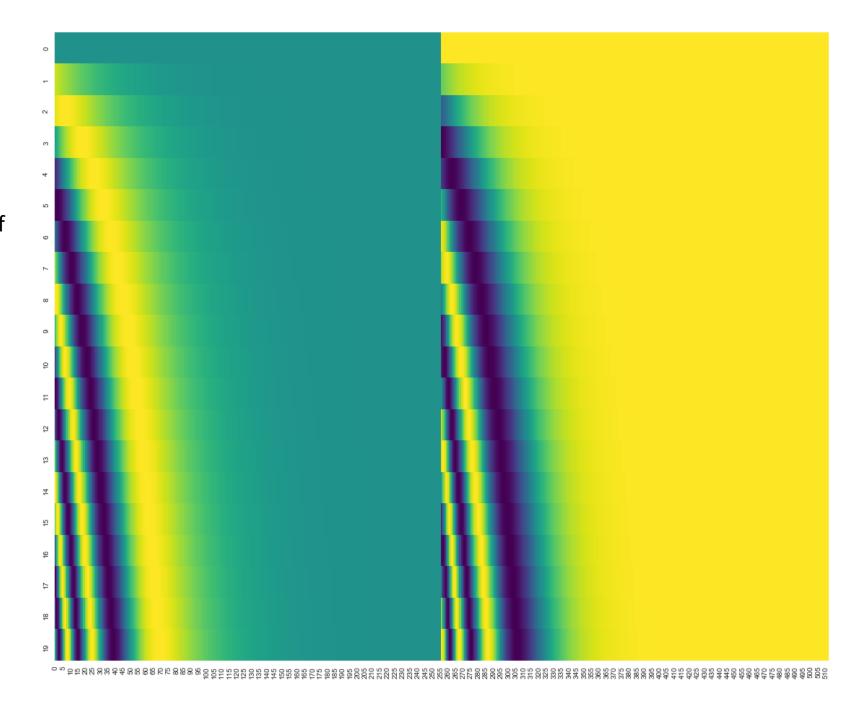




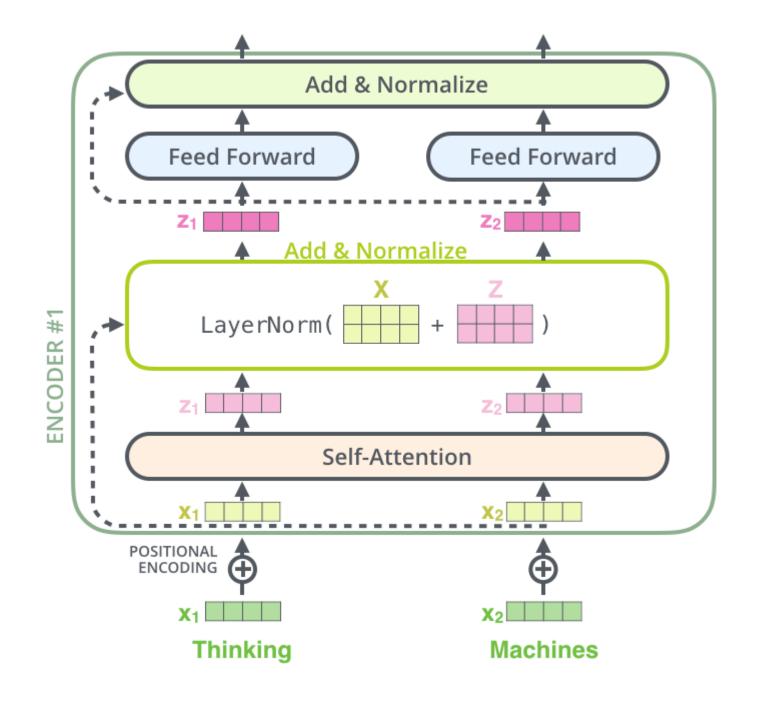

Mo

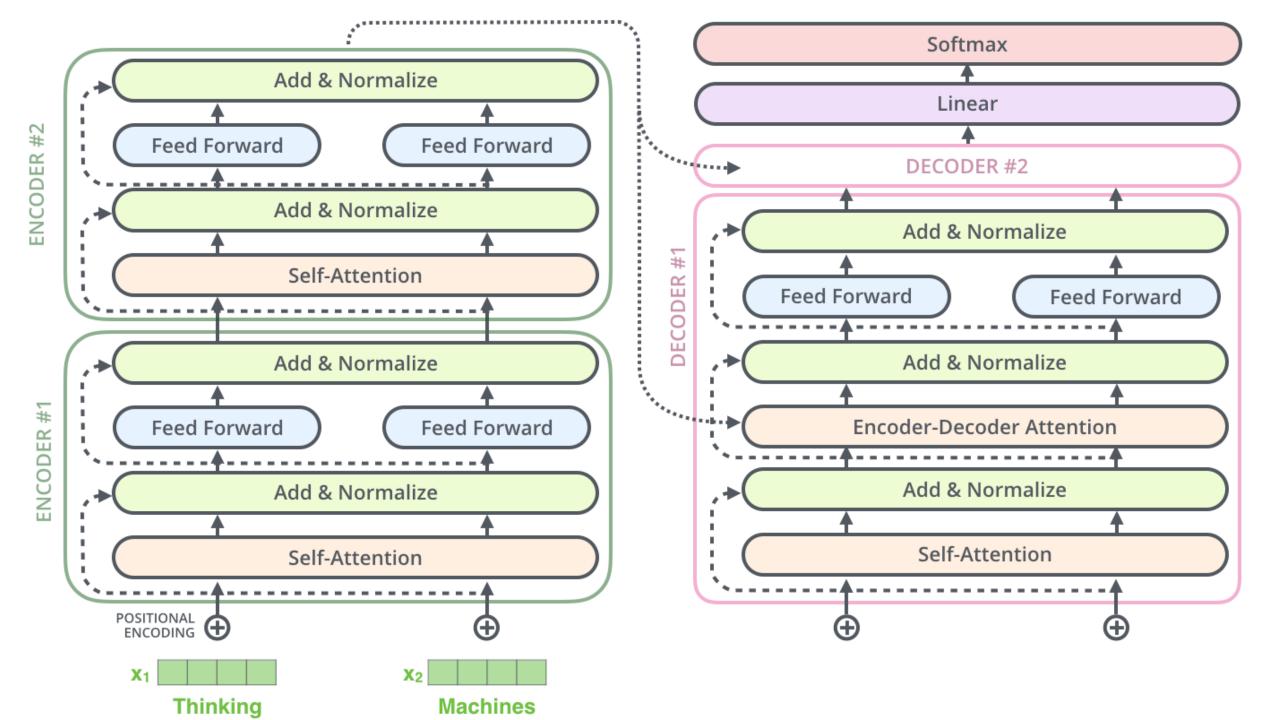


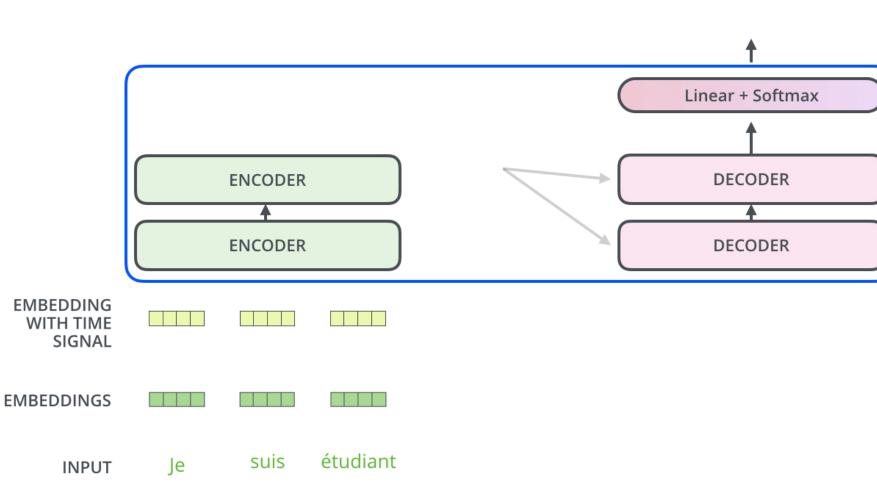
Representing The Order of The Sequence Using Positional Encoding

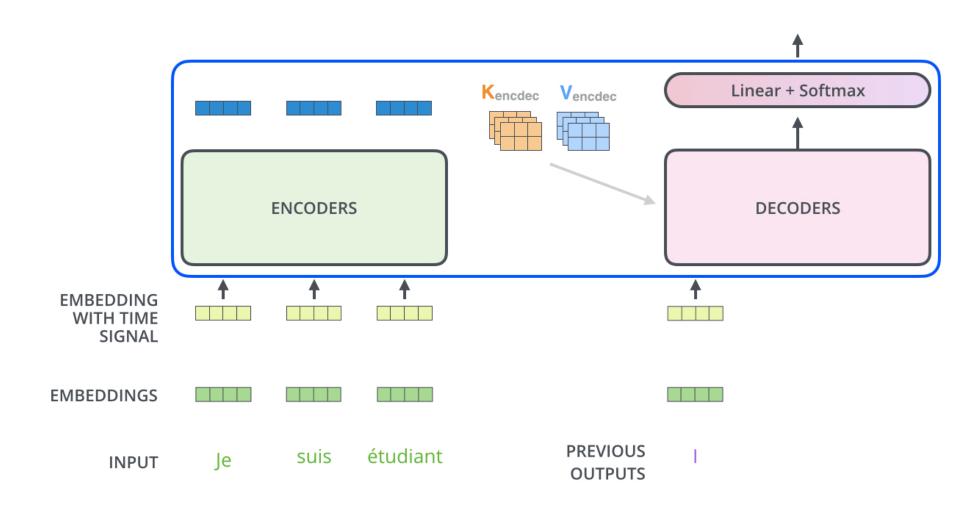

To give the model a sense of the order of the words, we add positional encoding vectors -- the values of which follow a specific pattern.




A real example of positional encoding with a toy embedding size of 4

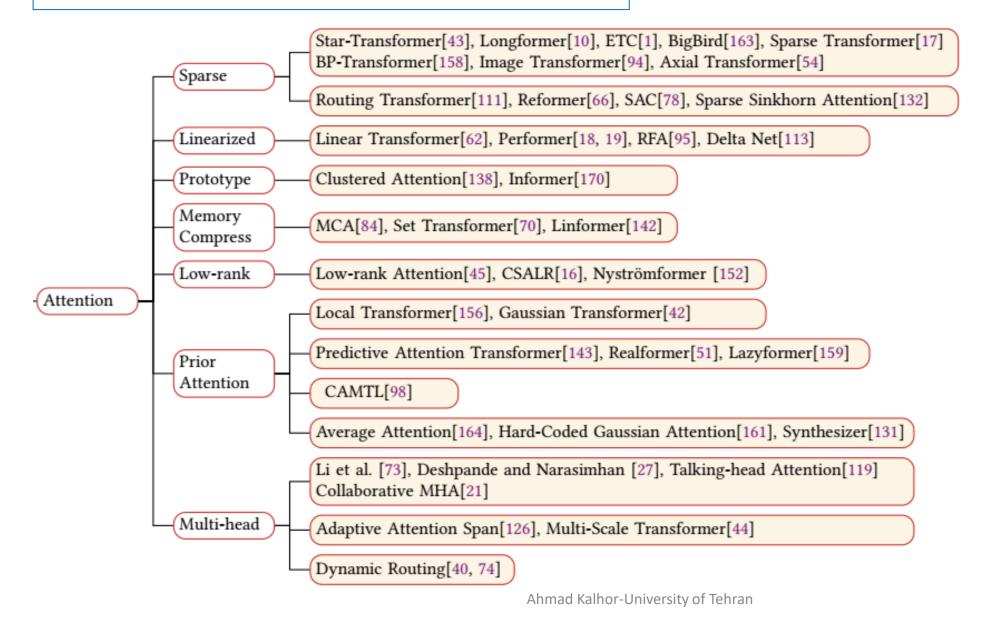

A real example of positional encoding for 20 words (rows) with an embedding size of 512 (columns). You can see that it appears split in half down the center. That's because the values of the left half are generated by one function (which uses sine), and the right half is generated by another function (which uses cosine). They're then concatenated to form each of the positional encoding vectors.

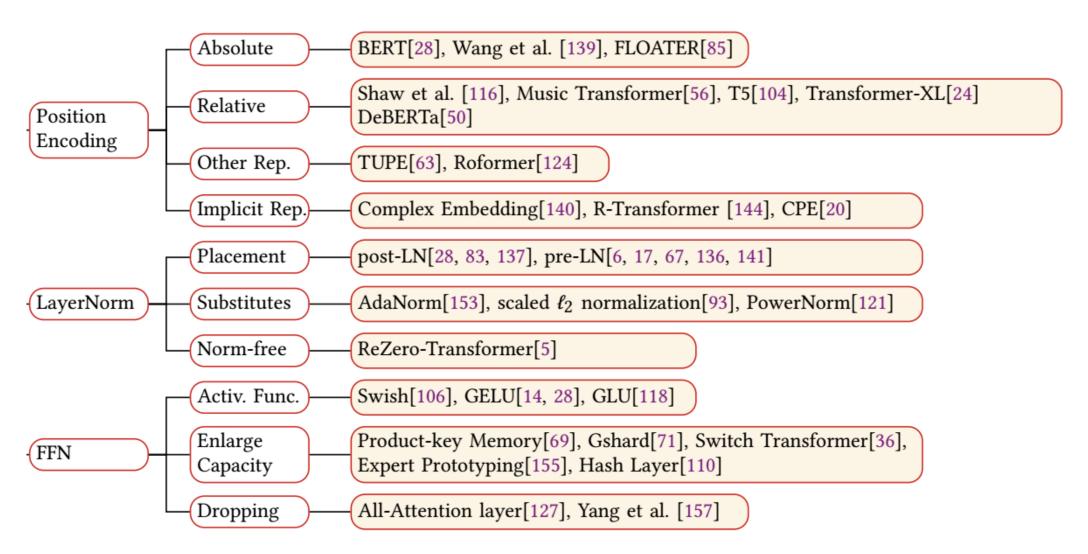

The Residuals



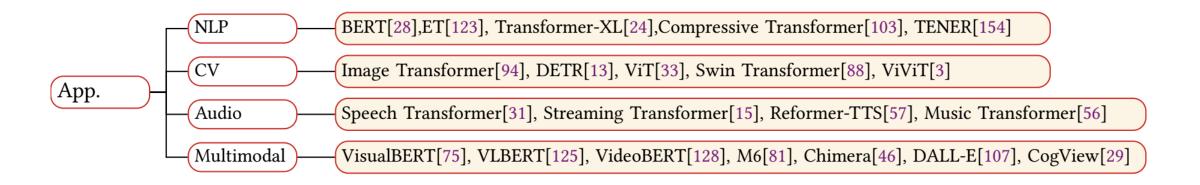
After finishing the encoding phase, we begin the decoding phase. Each step in the decoding phase outputs an element from the output sequence (the English translation sentence in this case).

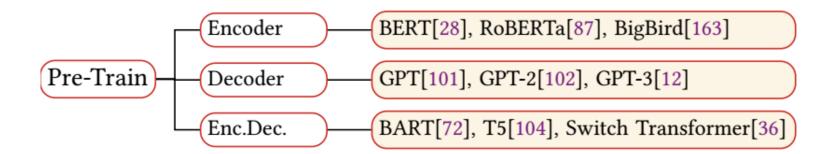
Decoding time step: 1 2 3 4 5 6

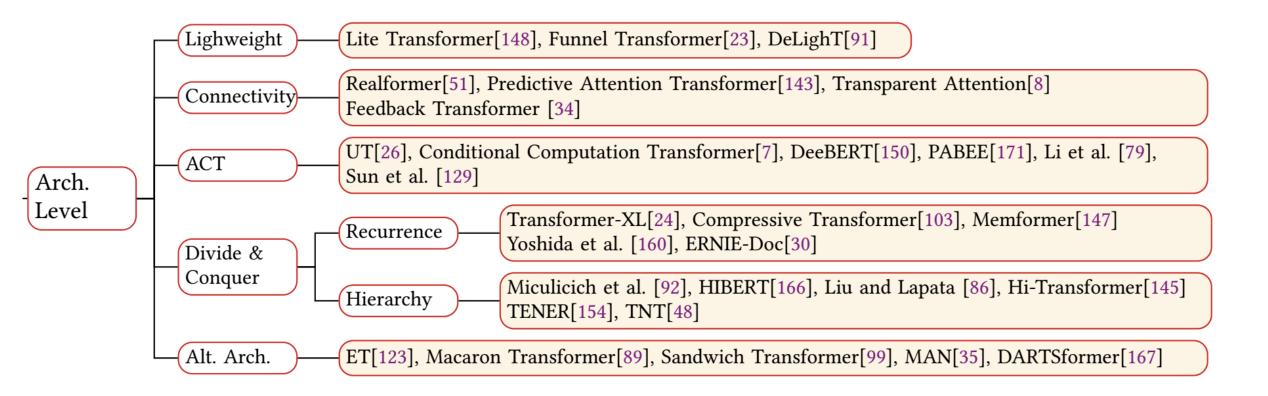

OUTPUT


The Final Linear and Softmax Layer

Which word in our vocabulary am is associated with this index? Get the index of the cell 5 with the highest value (argmax) log_probs 0 1 2 3 4 5 ... vocab_size Softmax logits 0 1 2 3 4 5 ... vocab_size Linear Decoder stack output


Taxonomy of Transformers in Module Level (Attention)


Taxonomy of Transformers in Module Level (Position-Layer Norm-FFN)

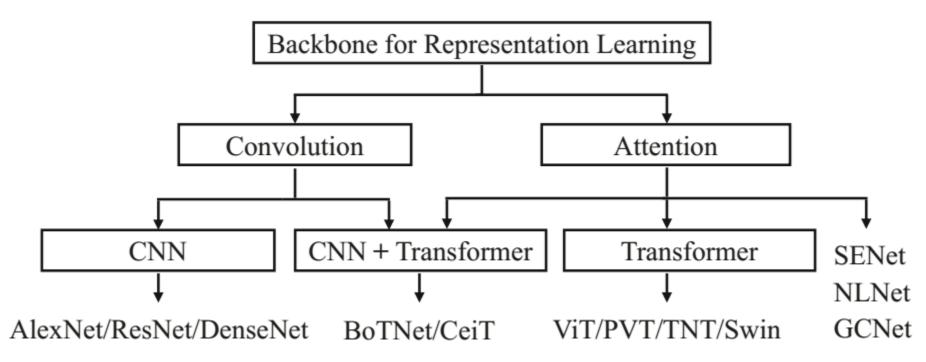

Taxonomy of Transformers in App

Taxonomy of Transformers in Pre-Train

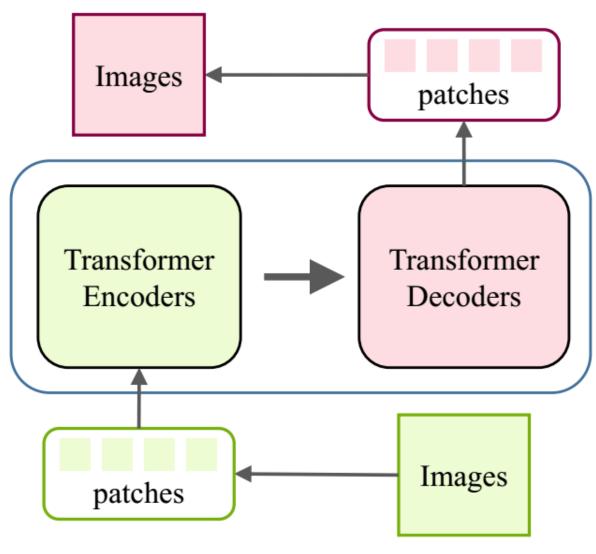
Taxonomy of Transformers in Arch. Level

ACT: Adaptive Computation Time

Model Usage


Generally, the Transformer architecture can be used in three different ways:

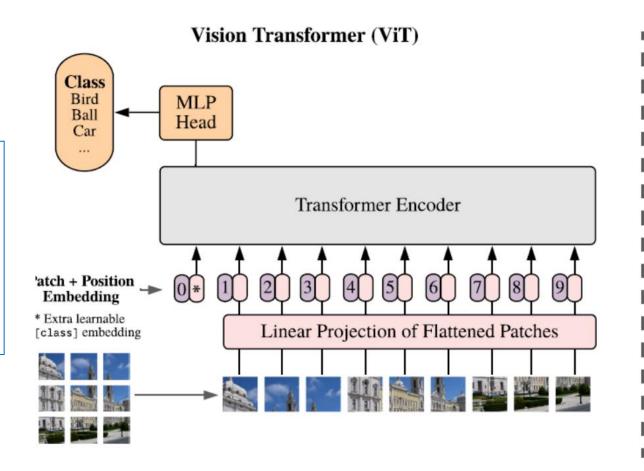
- *Encoder-Decoder*. The full Transformer architecture as introduced is used. This is typically used in sequence-to-sequence modeling (e.g., neural machine translation).
- Encoder only. Only the encoder is used and the outputs of the encoder are utilized as are presentation for the input sequence. This is usually used for classification or sequence labeling problems.
- *Decoder only*. Only the decoder is used, where the encoder-decoder cross-attention module is also removed. This is typically used for sequence generation, such as language modeling.


Vision Transformer (ViT)

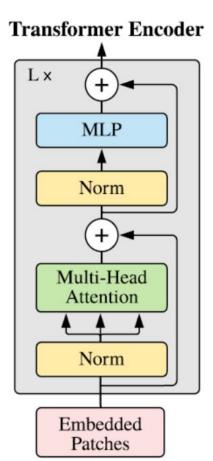
The applications of transformer based models in computer vision, including image classification, high/mid-level vision, low-level vision and video processing.

Convolution and Attention in Computer Vision Problems:

A generic framework for using transformer in image processing


Ahmad Kalhor-University of Tehran

Vision Transformer (VIT)


Dosovitskiy...2021

Vision Transformer (ViT) is a pure transformer directly applies to the sequences of image patches for image classification task.

It follows transformer's original design as much as possible.

The framework of ViT

How the Vision Transformer works

* Nikolas Adaloglou

The total architecture is called Vision Transformer (ViT in short). Let's examine it step by step.

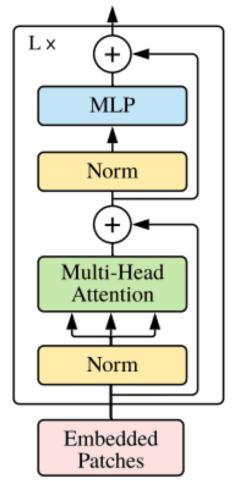

- 1. Split an image into patches
- 2. Flatten the patches
- 3. Produce lower-dimensional linear embedding from the flattened patches
- 4. Add positional embedding (they model positional embeddings with trainable linear layers)
- 5. Feed the sequence as an input to a standard transformer encoder
- 6. Pretrain the model with image labels (fully supervised on a huge dataset)
- 7. Fine tune on the downstream dataset for image classification

Image patches are basically the sequence tokens (like words).

In fact, the encoder block is identical to the original transformer proposed by Vaswani et al. (2017)

The only thing that changes is the number of those blocks.

Transformer Encoder

To this end, and to further prove that with more data they can train larger ViT variants, 3 models were proposed:

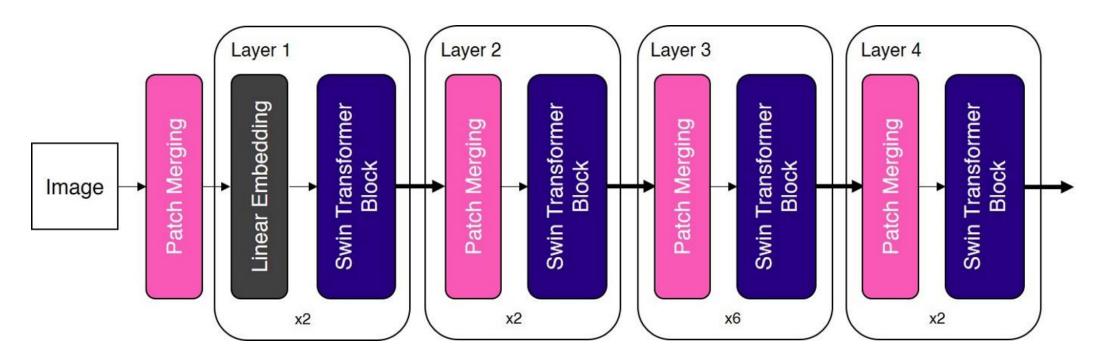
Model	Layers	${\bf Hidden\ size\ } D$	MLP size	Heads	Params
ViT-Base	12	768	3072	12	86M
ViT-Large	24	1024	4096	16	307M
ViT-Huge	32	1280	5120	16	632M

Heads refer to multi-head attention, while the MLP size refers to the blue module in the figure.

MLP stands for multi-layer perceptron but it's actually a bunch of linear transformation layers.

Hidden size D is the embedding size, which is kept fixed throughout the layers. Why keep it fixed? So that we can use short residual skip connections.

But is this enough?


Yes and no. Actually, we need a massive amount of data and as a result computational resources.

Swin Transformer

- Swin Transformer (Liu et al., 2021) is a transformer-based deep learning model with state-of-the-art performance in vision tasks. Unlike the Vision Transformer (ViT) (Dosovitskiy et al., 2020) which precedes it, Swin Transformer is highly efficient and has greater accuracy.
- In 2020, the Vision Transformer (ViT) garnered much attention from the AI community, notable for its pure transformer architecture with promising results in vision tasks. Despite its promise,
- ViTs suffer from several shortcomings:
 - 1. Most notably, ViTs struggle with high resolution images as its computational complexity is *quadratic* to the image size.
 - 2. Furthermore, the fixed scale tokens in ViTs are unsuitable in vision tasks where the visual elements are of variable scale.
- A flurry of research work followed ViT, and most of them made enhancements to the standard transformer architecture in order to address the above-mentioned shortcomings.
- In 2021, Microsoft researchers published the Swin Transformer (Liu et al., 2021), arguably one of the most exciting piece of research following up from the original ViT

Swin Transformers

The Swin Transformer introduced two key concepts to address the issues faced by the original ViT — **hierarchical feature maps** and **shifted window attention.** In fact, the name of Swin Transformer comes from "**S**hifted **win**dow **Transformer**". The overall architecture of the Swin Transformer is shown below.

As we can see, the 'Patch Merging' block and the 'Swin Transformer Block' are the two key building blocks in Swin Transformer.

The shifted windowing scheme brings greater efficiency by limiting self-attention computation to non-overlapping local windows while also allowing for cross-window connection.

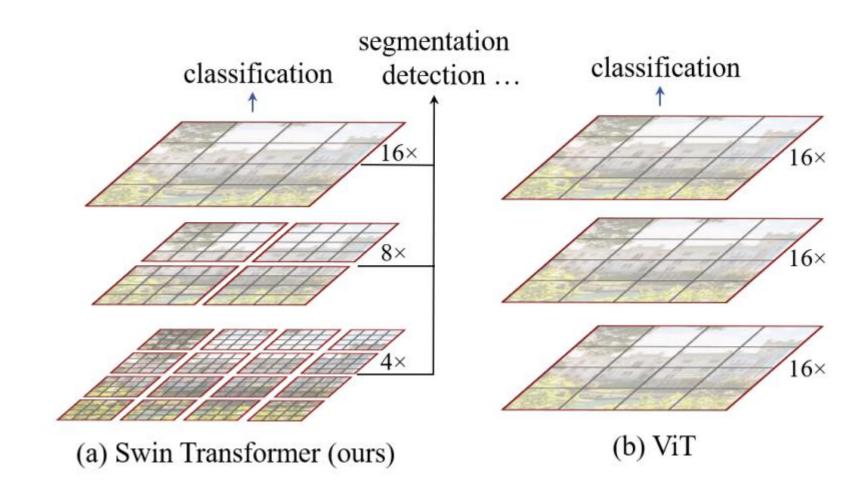


TABLE 1: Representative works of vision transformers.

Category	Sub-category	Method	Highlights	Publication
		ViT [15]	Image patches, standard transformer	ICLR 2021
	Supervised pretraining	TNT [29]	Transformer in transformer, local attention	NeurIPS 2021
Backbone		Swin [30]	Shifted window, window-based self-attention	ICCV 2021
	Self-supervised pretraining	iGPT [14]	Pixel prediction self-supervised learning, GPT model	ICML 2020
	Self-supervised pretraining	MoCo v3 [31]	Contrastive self-supervised learning, ViT	ICCV 2021
		DETR [16]	Set-based prediction, bipartite matching, transformer	ECCV 2020
	Object detection	Deformable DETR [17]	DETR, deformable attention module	ICLR 2021
		UP-DETR [32]	Unsupervised pre-training, random query patch detection	CVPR 2021
High/Mid-level		Max-DeepLab [25]	PQ-style bipartite matching, dual-path transformer	CVPR 2021
vision	Segmentation	VisTR [33]	Instance sequence matching and segmentation	CVPR 2021
VISIOII		SETR [18]	Sequence-to-sequence prediction, standard transformer	CVPR 2021
		Hand-Transformer [34]	Non-autoregressive transformer, 3D point set	ECCV 2020
	Pose Estimation	HOT-Net [35]	Structured-reference extractor	MM 2020
		METRO [36]	Progressive dimensionality reduction	CVPR 2021
		Image Transformer [27]	Pixel generation using transformer	ICML 2018
Low-level	Image generation	Taming transformer [37]	VQ-GAN, auto-regressive transformer	CVPR 2021
vision		TransGAN [38]	GAN using pure transformer architecture	NeurIPS 2021
VISIOII	Image enhancement	IPT [19]	Multi-task, ImageNet pre-training, transformer model	CVPR 2021
	image emiancement	TTSR [39]	Texture transformer, RefSR	CVPR 2020
Video	Video inpainting	STTN [28]	Spatial-temporal adversarial loss	ECCV 2020
processing	Video captioning	Masked Transformer [20]	Masking network, event proposal	CVPR 2018
	Classification	CLIP [40]	NLP supervision for images, zero-shot transfer	arXiv 2021
Multimodality	Image generation	DALL-E [41]	Zero-shot text-to image generation	ICML 2021
Multillodality	image generation	Cogview [42]	VQ-VAE, Chinese input	NeurIPS 2021
	Multi-task	UniT [43]	Different NLP & CV tasks, shared model parameters	ICCV 2021
	Decomposition	ASH [44]	Number of heads, importance estimation	NeurIPS 2019
Efficient	Distillation	TinyBert [45]	Various losses for different modules	EMNLP Findings 2020
transformer	Quantization	FullyQT [46]	Fully quantized transformer	EMNLP Findings 2020
	Architecture design	ConvBert [47]	Local dependence, dynamic convolution	NeurIPS 2020
La de la casa de la	and the latest the second and the	antala alamana afilik	hat is soon in the image (avente)	

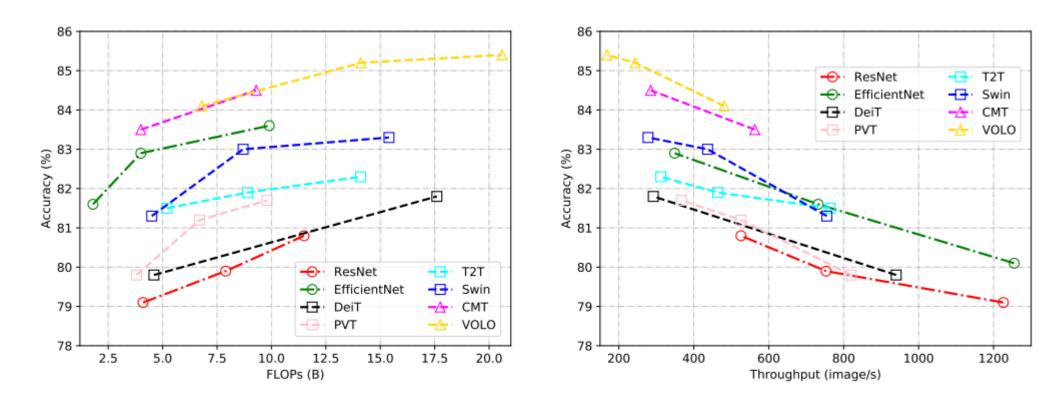
^{*}High-level vision deals with the interpretation and use of what is seen in the image (events)

^{*}Mid-level vision deals with how this information is organized as objects and their attributes (classification, detection, segmentation)

^{*}Low-level vison deals with how this information is organized as edges, blobs, and... (In image generation and enhancement)

ImageNet result comparison of representative CNN and vision transformer models

Pure transformer means only using a few convolutions in the stem stage.


CNN + Transformer means using convolutions in the intermediate layers.

Model	Params	FLOPs	Throughput	Top-1
Model	(M)	(B)	(image/s)	(%)
	CN	IN		
ResNet-50 [12], [67]	25.6	4.1	1226	79.1
ResNet-101 [12], [67]	44.7	7.9	753	79.9
ResNet-152 [12], [67]	60.2	11.5	526	80.8
EfficientNet-B0 93	5.3	0.39	2694	77.1
EfficientNet-B1 93	7.8	0.70	1662	79.1
EfficientNet-B2 93	9.2	1.0	1255	80.1
EfficientNet-B3 [93]	12	1.8	732	81.6
EfficientNet-B4 [93]	19	4.2	349	82.9

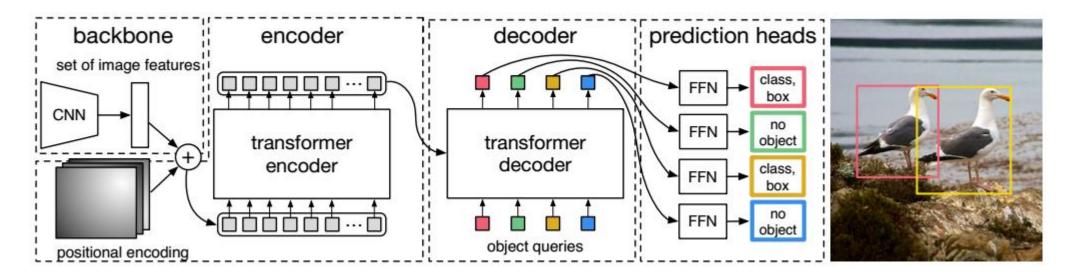
M- 1-1	Params	FLOPs	Throughput	Top-1
Model	(M)	(B)	(image/s)	(%)
	Pure Tra	nsformer		
DeiT-Ti [15], [59]	5	1.3	2536	72.2
DeiT-S [15], [59]	22	4.6	940	79.8
DeiT-B [15], [59]	86	17.6	292	81.8
T2T-ViT-14 [67]	21.5	5.2	764	81.5
T2T-ViT-19 [67]	39.2	8.9	464	81.9
T2T-ViT-24 [67]	64.1	14.1	312	82.3
PVT-Small [72]	24.5	3.8	820	79.8
PVT-Medium [72]	44.2	6.7	526	81.2
PVT-Large [72]	61.4	9.8	367	81.7
TNT-S [29]	23.8	5.2	428	81.5
TNT-B [29]	65.6	14.1	246	82.9
CPVT-S [85]	23	4.6	930	80.5
CPVT-B 85	88	17.6	285	82.3
Swin-T [60]	29	4.5	755	81.3
Swin-S 60	50	8.7	437	83.0
Swin-B [60]	88	15.4	278	83.3
	CNN + Tr	ansformer		
Twins-SVT-S [62]	24	2.9	1059	81.7
Twins-SVT-B [62]	56	8.6	469	83.2
Twins-SVT-L 62	99.2	15.1	288	83.7
Shuffle-T [65]	29	4.6	791	82.5
Shuffle-S [65]	50	8.9	450	83.5
Shuffle-B [65]	88	15.6	279	84.0
CMT-S 94	25.1	4.0	563	83.5
CMT-B [94]	45.7	9.3	285	84.5
VOLO-D1 95	27	6.8	481	84.2
VOLO-D2 95	59	14.1	244	85.2
VOLO-D3 95	86	20.6	168	85.4
VOLO-D4 [95]	193	43.8	100	85.7
VOLO-D5 [95]	296	69.0	64	86.1

Ahmad Kalhor-University of Tehr

FLOPs and throughput comparison of representative CNN and vision transformer models (ImageNet Top-1 (%)).

(a) Acc v.s. FLOPs.

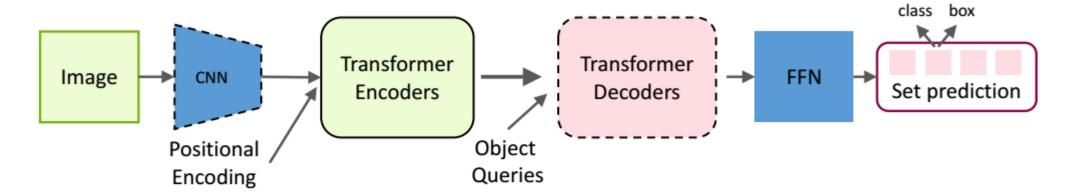
(b) Acc v.s. throughput.

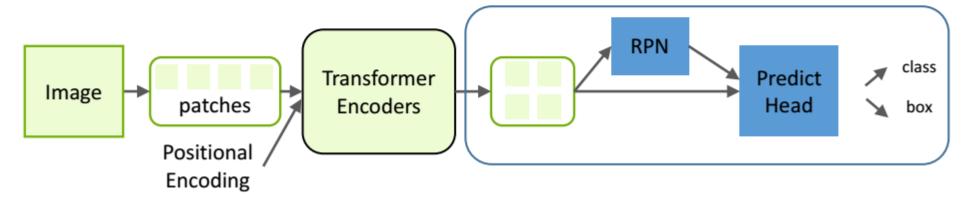

Throughput is how much information actually gets delivered in a certain amount of time.

FLOP: Floating point operations per second

ImageNet Benchmark (Image Classification) | Papers With Code

Rank	Model	Top 1 Accuracy	↑ Top 5 Accuracy	Number of params	Extra Training Data	Paper	Code	Result	Year	Tags ☑
1	Model soups (ViT-G/14)	90.94%		1843M	~	Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time		Ð	2022	Transformer JFT-3B
2	CoAtNet-7	90.88%		2440M	~	CoAtNet: Marrying Convolution and Attention for All Data Sizes	O	Ð	2021	Conv+Transformer JFT-3B
3	ViT-G/14	90.45%		1843M	~	Scaling Vision Transformers		Ð	2021	Transformer JFT-3B
4	CoAtNet-6	90.45%		1470M	~	CoAtNet: Marrying Convolution and Attention for All Data Sizes	C	Ð	2021	Conv+Transformer JFT-3B
5	V-MoE-15B (Every-2)	90.35%		14700M	~	Scaling Vision with Sparse Mixture of Experts	O	Ð	2021	Transformer
6	Meta Pseudo Labels (EfficientNet-L2)	90.2%	98.8%	480M	~	Meta Pseudo Labels	O	Ð	2021	EfficientNet JFT-300M


Transformers in Detection


The overall architecture of DETR

*N. Carion et al. End-to-end object detection with transformers. In ECCV, 2020

General framework of transformer-based object detection

(a) Transformer-based set prediction for detection

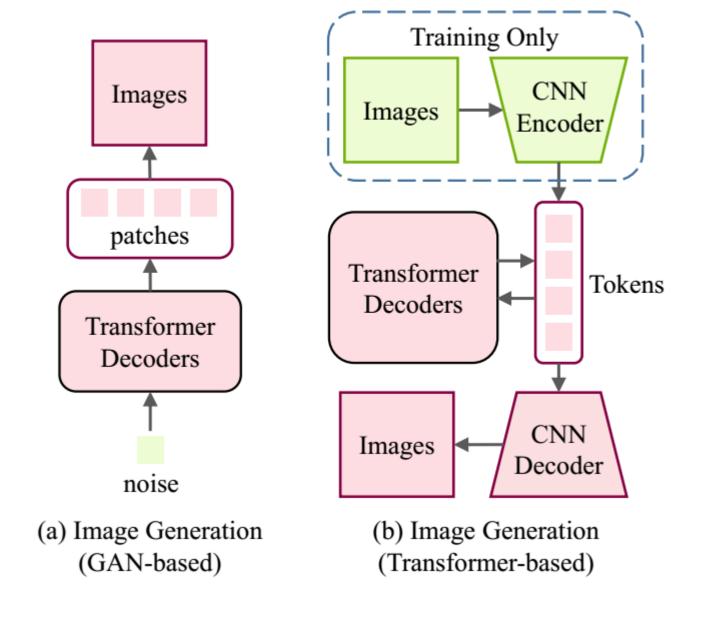
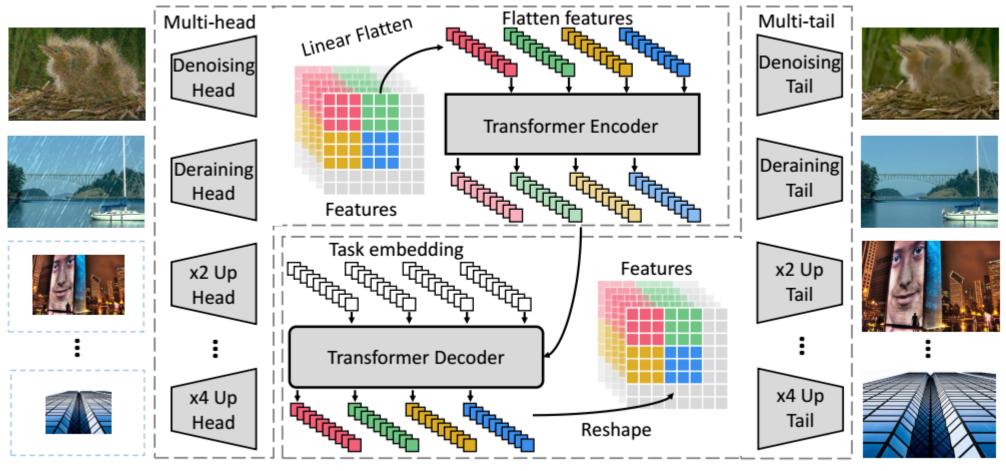

(b) Transformer-based backbone for detection

TABLE 3: Comparison of different transformer-based object detectors on COCO 2017 val set. Running speed (FPS) is evaluated on an NVIDIA Tesla V100 GPU as reported in [17]. †Estimated speed according to the reported number in the paper. *ViT backbone is pre-trained on ImageNet-21k. *ViT backbone is pre-trained on an private dataset with 1.3 billion images.

Method	Epochs	AP	AP_{50}	AP ₇₅	AP_S	AP_M	AP_L	#Params (M)	GFLOPs	FPS
CNN based										
FCOS [125]	36	41.0	59.8	44.1	26.2	44.6	52.2	-	177	23^{\dagger}
Faster R-CNN + FPN [13]	109	42.0	62.1	45.5	26.6	45.4	53.4	42	180	26
CNN Backbone + Transformer Head										
DETR [16]	500	42.0	62.4	44.2	20.5	45.8	61.1	41	86	28
DETR-DC5 [16]	500	43.3	63.1	45.9	22.5	47.3	61.1	41	187	12
Deformable DETR [17]	50	46.2	65.2	50.0	28.8	49.2	61.7	40	173	19
TSP-FCOS [120]	36	43.1	62.3	47.0	26.6	46.8	55.9	-	189	20^{\dagger}
TSP-RCNN 120	96	45.0	64.5	49.6	29.7	47.7	58.0	-	188	15^{\dagger}
ACT+MKKD (L=32) [121]	-	43.1	-	-	61.4	47.1	22.2	-	169	14^{\dagger}
SMCA [123]	108	45.6	65.5	49.1	25.9	49.3	62.6	-	-	-
Efficient DETR 124	36	45.1	63.1	49.1	28.3	48.4	59.0	35	210	-
UP-DETR [32]	150	40.5	60.8	42.6	19.0	44.4	60.0	41	-	-
UP-DETR [32]	300	42.8	63.0	45.3	20.8	47.1	61.7	41	-	-
Transformer Backbone + CNN Head										
ViT-B/16-FRCNN [‡] [113]	21	36.6	56.3	39.3	17.4	40.0	55.5	-	-	-
ViT-B/16-FRCNN* [113]	21	37.8	57.4	40.1	17.8	41.4	57.3	-	-	-
PVT-Small+RetinaNet [72]	12	40.4	61.3	43.0	25.0	42.9	55.7	34.2	118	-
Twins-SVT-S+RetinaNet [62]	12	43.0	64.2	46.3	28.0	46.4	57.5	34.3	104	-
Swin-T+RetinaNet 60	12	41.5	62.1	44.2	25.1	44.9	55.5	38.5	118	-
Swin-T+ATSS 60	36	47.2	66.5	51.3	-	-	-	36	215	-
Pure Transformer based										
PVT-Small+DETR [72]	50	34.7	55.7	35.4	12.0	36.4	56.7	40	-	-
TNT-S+DETR [29]	50	38.2	58.9	39.4	15.5	41.1	58.8	39	-	-
YOLOS-Ti 126	300	30.0	-	-	-	-	-	6.5	21	-
YOLOS-S 126	150	37.6	57.6	39.2	15.9	40.2	57.3	28	179	-
YOLOS-B [126]	150	42.0	62.2	44.5	19.5	45.3	62.1	127	537	-

Alliliau Kalliul-Ulliversity ul Telliali

Transformers in Image Generation

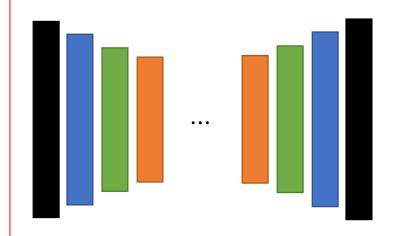

A generic framework for transformer in image generation

Transformers in Image Enhancement

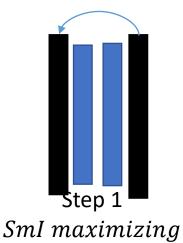
IPT

Image Processing Transformer

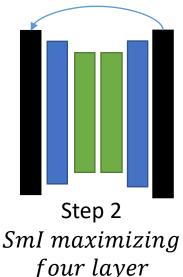
[19] H. Chen et al. Pretrained image processing transformer. In *CVPR*, 2021

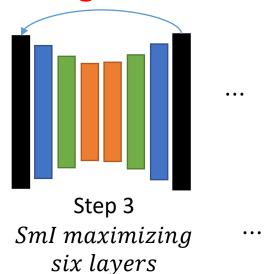


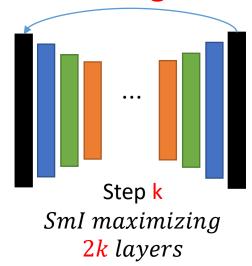
IPT fully utilizes the advantages of transformers by using large pre-training datasets. It achieves state-of-the-art performance in several image processing tasks, including super-resolution, denoising, and deraining.


3.3.8 Layer-wise Forward Learning Part 3

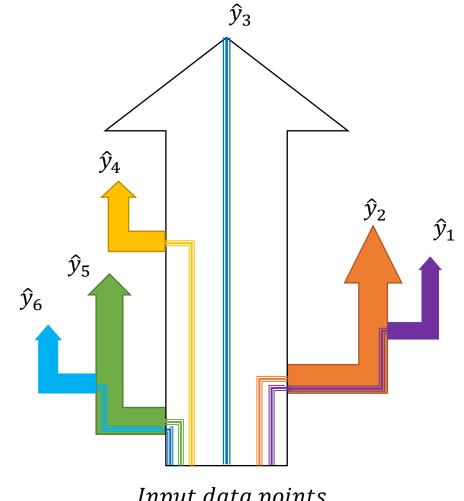
Layer Wise Forward Learning of an Auto-Encoder


- Smoothness index can be used to train an auto-encoder step by step in a forward manner.
- At the first step two hidden layers are trained and then by each further step two new layers are added and trained to the AE.
- At each step, the training procedure is based on "SmI" maximizing.
- In fact, the smoothness index is approximated by a triplet loss and then the loss is minimized.
- Each example at the output layer decreases(increases) its distance to one of its K
 nearest neighbors that has nearest (furthest) distance at the target(input) space
 (reconstruction)




Layer-wise Learning through Smoothness Maximizing

two layer



3.3.4 Layer-wise branching

Layer-wise branching

- In a classification (regression) problem, the required features may be extracted earlier or later through layers of a DNN.
- If we design a new architecture of DNN which can conduct earlier features in some independent paths, more compact and more generalized DNNs can be learned.
- In such an architecture, there are a main body and some branches. The main body forms the main flow of data but each branch process a part of data-flow.
- We can use complexity measures like SI(SmI) to distinguish early features from other features and form a new branch for it.
- Each branch like the man body can define some sub-braches, too.
- In such a DNN, the amount of data-flow decreases through the main body just after each branching.

Input data points

Some notes

- Branch in point where an increasing jump on SI(SmI) is occurred.
- Find the appropriate part of data (class/output/examples) to be branched.
- Branching is done as a forward design operation

Utilizing SI for Branching

Image-based and Partially Categorical Annotating Approach for Pedestrian Attribute Recognition

Hossein Bodaghi 3. Train the branche for 1. Check the information flow through DukeMTMC-reID: 34183 images network for attribute recognition attribute recognition pretrained network: †SI person re identification layer 2.generating branches attributes, Task1: person reID

Task2:attribute recognition

In order to examine the impact of data on the PAR result, this research suggests an image-based partially categorical

image-based partially categorical attribute dataset (CA-Duke) including 36,411 images of the DukeMTMC-reID dataset for 74 pedestrian attributes.

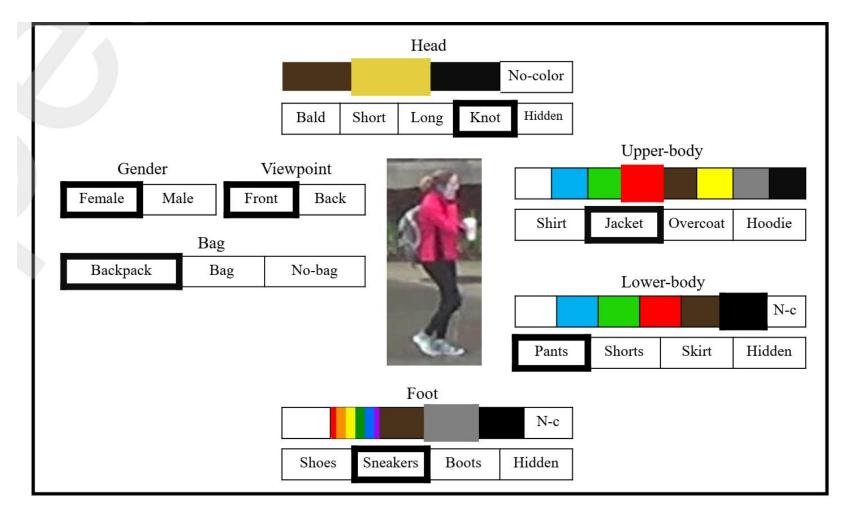
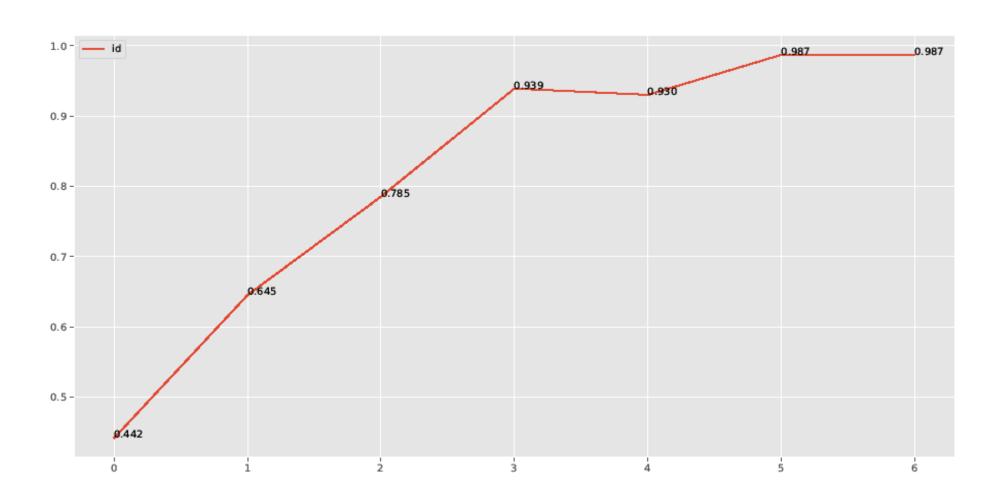
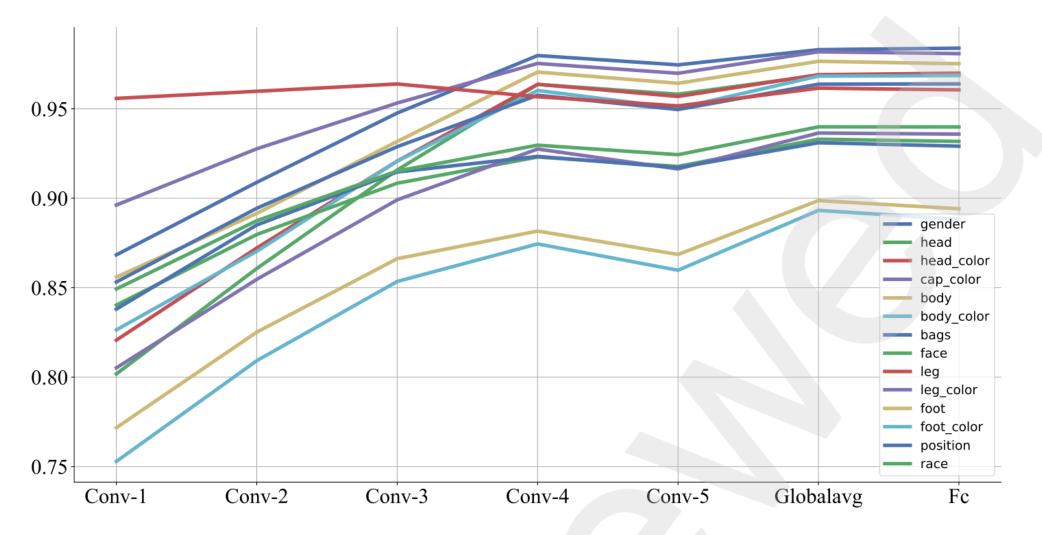
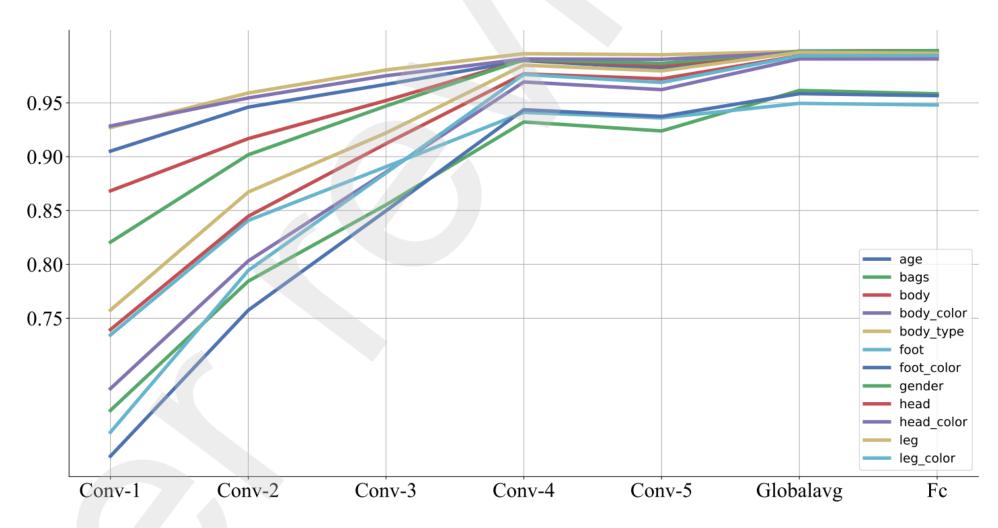




Figure 1: Partial attribute annotating for proposed dataset that includes the categories of each part and their colors.


Separation Index for person Reid

(a classification problem)- OS-Net (Omni-Scale Feature Learning Network)

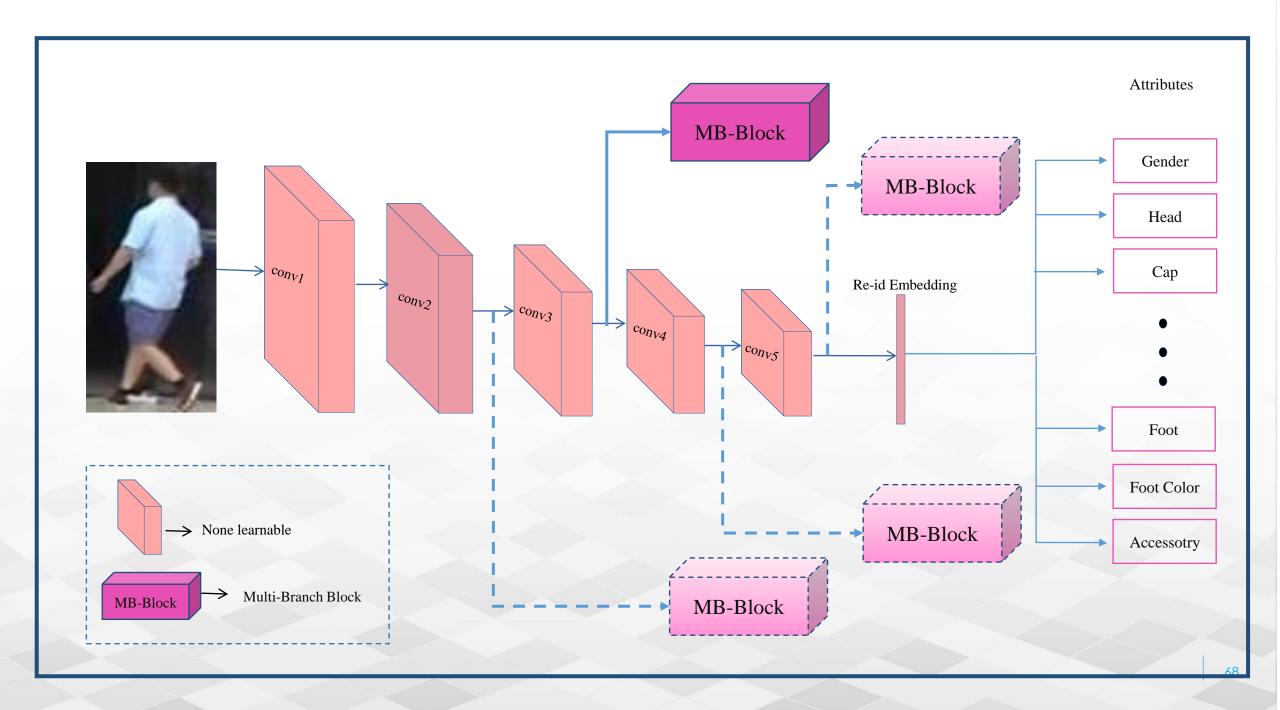
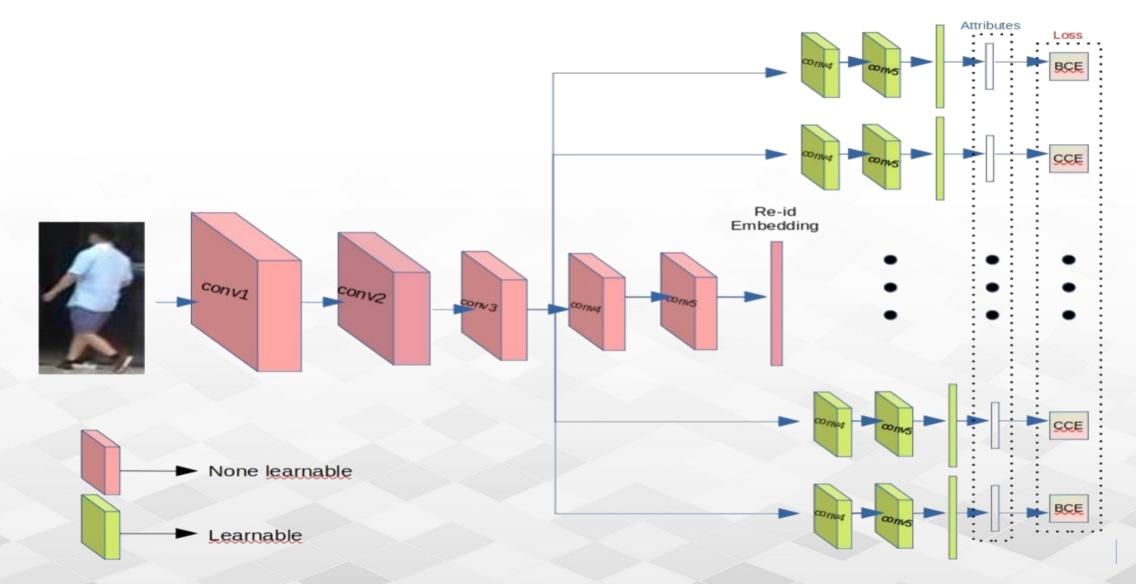
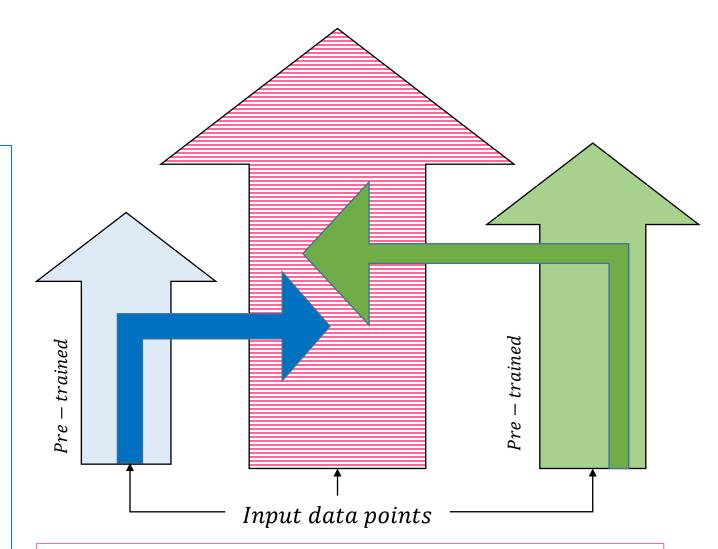


Figure 6: The SI value on the train set of the CA-Duke dataset in the middle layers of the pre-trained OSNet.

Figure 7: The SI value on the train set of the CA-Market dataset in the middle layers of the pre-trained OSNet.

Multi-Branch Network



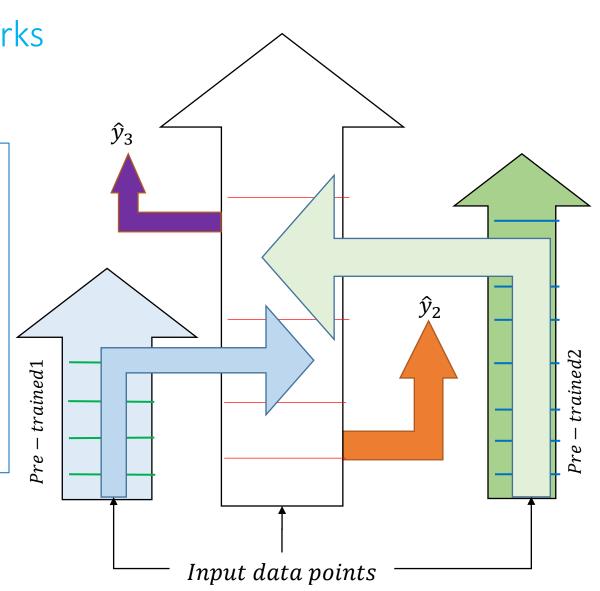

Table 11 Comparing the results of the proposed multi-branch network with OSNet $_x1_0$ as the baseline, for person re-identification task with the state-of-the-art models.

Models		Marke	et-1501		DukeMTMC-reID			
	rank-1	rank-5	rank-10	mAP	rank-1	rank-5	rank-10	mAP
APDR [10]	93.10	97.20	98.20	80.1	84.30	92.40	94.70	69.70
DAReID [42]	94.60	-	-	87.00	88.90	-	-	78.40
AICNet [53]	93.90	-	_	81.80	84.20	-	-	70.40
GPS [54]	95.20	98.40	99.10	87.80	88.20	95.20	96.70	78.70
Pose-Embedded Feature Branch [55]	92.70	-	-	81.30	86.20	-	-	72.60
RANGEv2 + K-reciprocal [56]	95.10	-	-	91.30	88.70		-	84.20
DADAA [57]	92.60	-	-	88.80	83.10	_	_	77.80
ASNet [58]	96.30	-	-	90.50	90.60	-	-	82.70
AL-APR [12]	89.00	95.60	97.27	74.38	80.52	_	-	63.67
AFFNet [54]	93.90	_	_	81.70	84.60	-	-	70.70
PAAN(w SB) [44]	95.53	-	-	84.26	82.59	-	-	65.53
JVÌA [59]	94.70	97.00	97.90	88.40	85.60	-	-	85.80
AAB [11]	96.10	-	-	88.60	89.90	_	-	80.40
ARN [60]	82.36	-	-	72.37	73.83	-	-	62.82
AANet-152 + RR [8]	95.10	_	97.94	92.38	90.36	-	-	86.87
OSNet_X1_0 [47]	94.80	-	-	84.9	88.60	-	-	73.50
Ours (Vectorized)	87.54	88.32	91.02	84.99	86.52	87.89	89.24	75.17
Ours (Baseline + Re-ranking)	94.77	97.33	98.07	92.64	94.39	96.45	96.90	83.58

3.3.6 Layer-wise Fusion

Layer-wise Fusion

- In a classification (regression) problem, the required features may be extracted by fusing some prepared features from some pre-trained models.
- If we design a new architecture of DNN which can combine desired features from some pre-trained DNNs, more generalized DNNs can be learned.
- In such an architecture, there are a main body which is integrated by some branches from other DNNs at different points. The main body forms the main flow of data but each branch insert information-flow.
- We can use complexity measures like SI(SmI) to find some desired features from other pre-trained DDNs.


Some notes

- Fuse at any point where SI(SmI) may increase significantly.
- Fusion is done in as a forward design operation.

3.3.7 Forward Design

In forward design of deep neural network, flowing tasks are done in a way that SI(SmI) maximizes in a classification(regression) problem.

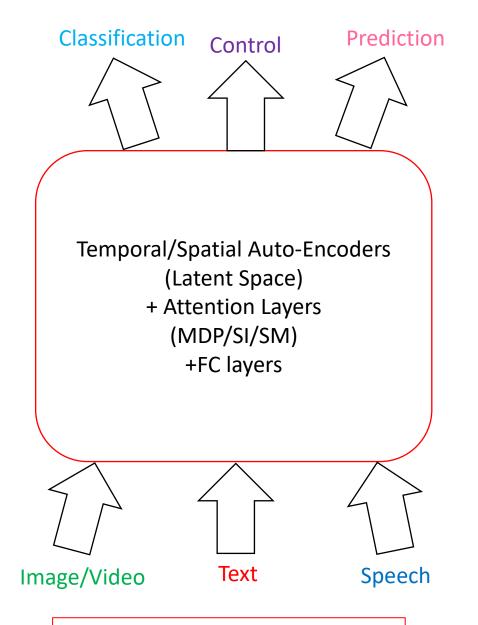
- 1. Organization of different layers
- Adjusting the resolution, width, and depth of the network
- 3. Adding new branches on some layers where SI(SmI) increases significantly.
- 4. Fusing at some nodes from some other pre-trained networks through which SI(SmI) increases significantly.

 \hat{y}_1

3.3.8 Forward Multi-Task Design

A neural network which receives multi-modal data and it is trained to do multi-tasks in a supervised method. Such network works as a generalist AI agent. The key idea is that by appropriate temporal/spatial encoders, different data steams are encoded as the latent space; then the required features for each task are chosen from the latent space by using SmI(SI).

Language Tasks


- Speech recognition
- Speech generating
- ...

Vision Tasks

- Image recognition
- Action Recognition
- Text recognition
- ...

Physical world tasks

- Motion tasks
- Grasping tasks
- ...

Narrow AI → General and wide AI

Artificial General Inteligent

A neural network which receives multi-modal data and it. is trained to do multi-tasks in an un-supervised method.

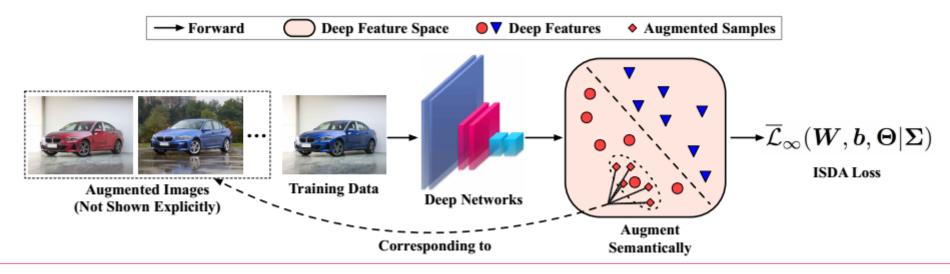
Such network works as a generalist AI agent which must learn without using labels and targets.

Some Steps

- Receive all measuring signals: Visual, inertial, force,.....
- Encode them as latent space by using appropriate spatial, temporal, and recurrent encoders
- Using some attention layers and mechanisms to reveals some useful features which maximizes the gathered information from the environment
- Learning to motion in the environment and to label objects.
- Learning to do the required physical tasks.

Classification Any observed events Motion-Grasp... Physical variables Image/Video Text Speech

Control


Prediction

3.9 Related works in local Layer-wise learning

- To introduce a learning approach that is more plausible with the learning in the brain
- To have better learning and design in accuracy, compactness, speed,...
- To increase the generalization and robustness of DNNs

(1) Implicit Semantic Data Augmentation for Deep Networks

Yulin Wang et al. 2020, Department of Automation, Tsinghua University, Beijing, China

The proposed implicit semantic data augmentation (ISDA) has two important components, i.e., (1) online estimation of class-conditional covariance matrices and (2) optimization with a robust loss function.

The first component aims to find a distribution from which we can sample meaningful semantic transformation directions for data augmentation, while the second saves us from explicitly generating a large amount of extra training data, leading to remarkable efficiency compared to existing data augmentation techniques.

Comparison Tables

Image net → $Cifar10 + Cifar100 \downarrow$

Table 1: Single crop error rates (%) of different deep networks on the validation set of ImageNet. We report the results of our implementation with and without ISDA. The better results are **bold-faced**, while the numbers in brackets denote the performance improvement achieved by ISDA. We also report the theoretical computational overhead and the additional training time introduced by ISDA in the last two columns, which is obtained with 8 Tesla V100 GPUs.

Networks	Params	Top-1 / Top-5 Error Rates (%)		Additional Cost	Additional Cost
Networks		Baselines	ISDA	(Theoretical)	(Wall Time)
ResNet-50 [4]	25.6M	23.0 / 6.8	21.9(1.1) / 6.3	0.25%	7.6%
ResNet-101 [4]	44.6M	21.7 / 6.1	20.8 _(0.9) / 5.7	0.13%	7.4%
ResNet-152 4	60.3M	21.3 / 5.8	20.3 _(1.0) / 5.5	0.09%	5.4%
DenseNet-BC-121 [5]	8.0M	23.7 / 6.8	23.2(0.5) / 6.6	0.20%	5.6%
DenseNet-BC-265 5	33.3M	21.9 / 6.1	21.2 _(0.7) / 6.0	0.24%	5.4%
ResNeXt-50, 32x4d [33]	25.0M	22.5 / 6.4	21.3(1.2) / 5.9	0.24%	6.6%
ResNeXt-101, 32x8d [33]	88.8M	21.1 / 5.9	20.1 _(1.0) / 5.4	0.06%	7.9%

Table 2: Evaluation of ISDA on CIFAR with different models. The average test error over the last 10 epochs is calculated in each experiment, and we report mean values and standard deviations in three independent experiments. The best results are **bold-faced**.

100
.41%
.34%
.44%
.46%
.03%
.21%
.27%
.21%
.07%
.15%
.13%
.25%
.10%
.34%
%
%

Algorithm 1 The ISDA Algorithm.

1: **Input:** \mathcal{D} , λ_0

2: Randomly initialize W, b and Θ

3: **for** t = 0 **to** T **do**

4: Sample a mini-batch $\{x_i, y_i\}_{i=1}^B$ from \mathcal{D}

5: Compute $a_i = G(x_i, \Theta)$

6: Estimate the covariance matrices Σ_1 , Σ_2 , ..., Σ_C

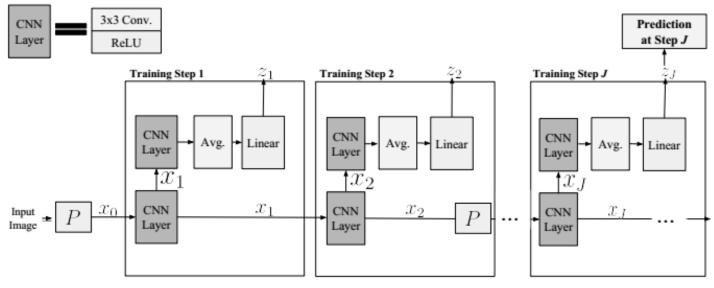
Compute L√∞ according to Eq. (4)

8: Update W, b, Θ with SGD

9: end for

10: Output: W, b and Θ

$$\mathcal{L}_{\infty}(\boldsymbol{W}, \boldsymbol{b}, \boldsymbol{\Theta} | \boldsymbol{\Sigma}) \leq \frac{1}{N} \sum_{i=1}^{N} -log(\frac{e^{\boldsymbol{w}_{y_i}^T \boldsymbol{a}_i + b_{y_i}}}{\sum_{j=1}^{C} e^{\boldsymbol{w}_{j}^T \boldsymbol{a}_i + b_{j} + \frac{\lambda}{2}(\boldsymbol{w}_{j}^T - \boldsymbol{w}_{y_i}^T) \sum_{y_i} (\boldsymbol{w}_j - \boldsymbol{w}_{y_i})}) \triangleq \overline{\mathcal{L}}_{\infty}.$$


 λ is a positive coefficient to control the strength of semantic data augmentation. The strength at initial epochs is chosen low but linearly it increases: $\lambda = (t/T) \times \lambda 0$

(2) Greedy Layerwise Learning Can Scale to ImageNet

Belilovsky et al. (University of Montral)-*Proceedings of the 36 th International Conference on Machine Learning*, Long Beach, California, PMLR 97, 2019.

We find that solving sequential 1-hidden-layer auxiliary problems lead to a CNN that exceeds AlexNet performance on ImageNet.

Extending this training methodology to construct individual layers by solving 2-and-3-hidden layer auxiliary problems, we obtain an 11-layer network that exceeds several members of the VGG model family on ImageNet, and can train a VGG-11 model to the same accuracy as end-to-end learning.

Algorithm 1 Layer Wise CNN

Input: Training samples $\{x_0^n, y^n\}_{n \leq N}$ for $j \in 0..J-1$ do Compute $\{x_j^n\}_{n \leq N}$ (via Eq.(1)) $(\theta_j^*, \gamma_j^*) = \arg\min_{\theta_j, \gamma_j} \hat{\mathcal{R}}(z_{j+1}; \theta_j, \gamma_j)$ end for

k = 2-hidden layer

Comparison tables

Layer-wise Trained	Acc. (Ens.)
SimCNN (k = 1 train)	88.3 (88.4)
SimCNN ($k = 2 \text{ train}$)	90.4 (90.7)
SimCNN(k = 3 train)	91.7 (92.8)
BoostResnet (Huang et al., 2017)	82.1
ProvableNN (Malach et al., 2018)	73.4
(Mosca et al., 2017)	81.6
Reference e2e	
AlexNet	89
VGG ¹	92.5
WRN 28-10 (Zagoruyko et al. 2016)	96.0
Alternatives	[Ref.]
Scattering + Linear	82.3
FeedbackAlign (Bartunov et al., 2018)	62.6 [67.6]

Table 2. Results on CIFAR-10. Compared to the few existing methods using *only* layerwise training schemes we report much more competitive results to well known benchmark models that like ours do not use skip connections. In brackets e2e trained version of the model is shown when available.

k = 1: the auxiliary classifier consists of only the linear A and L operators (1-hidden layer NN)

K>1 :K hidden layers for auxiliary classifiers

	Top-1 (Ens.)	Top-5 (Ens.)	
SimCNN ($k = 1 \text{ train}$)	58.1 (59.3)	79.7 (80.8)	
SimCNN ($k = 2 \text{ train}$)	65.7 (67.1)	86.3 (87.0)	
SimCNN ($k = 3 \text{ train}$)	69.7 (71.6)	88.7 (89.8)	
VGG-11 ($k = 3 \text{ train}$)	67.6 (70.1)	88.0 (89.2)	
VGG-11 (e2e train)	67.9	88.0	
Alternative	[Ref.]	[Ref.]	
DTargetProp	1.6 [29.6]	5.4 [51.0]	
(Bartunov et al., 2018)	1.6 [28.6]	5.4 [51.0]	
FeedbackAlign	6.6 [50.9]	16.7 [75.0]	
(Xiao et al., 2019)	0.0 [50.9]	10.7 [15.0]	
Scat. + Linear	17.4	N/A	
(Oyallon et al., 2018)	17.4	IV/A	
Random CNN	12.9	N/A	
FV + Linear	54.3	74.3	
(Sánchez et al., 2013)	34.3		
Reference e2e CNN			
AlexNet	56.5	79.1	
VGG-13	69.9	89.3	
VGG-19	72.9	90.9	
Resnet-152	78.3	94.1	

Table 3. Single crop validation acc. on ImageNet. Our SimCNN models use J=8. In parentheses see the ensemble prediction.

(3) Hebbian Semi-Supervised Learning in a Sample Efficiency Setting?

Gabriele Lagani, 2021, Computer Science Department, University of Pisa, Pisa, Italy

Highlights

1. A semi supervised training strategy that combines Hebbian learning with gradient descent

Hebbian for internal layers + SGD for the final fully connected layer

- 2. All internal layers (both convolutional and fully connected) are pre-trained using an unsupervised approach based on Hebbian learning
- 3. The last fully connected layer (the classification layer) is trained using Stochastic Gradient Descent (SGD)
- 4. The learning approach has been applied to CIFAR10, CIFAR100, tiny ImageNet
- 5. In regimes when the number of available labeled samples is low the proposed approach outperforms the other approaches in almost all the cases

Hebian

$$\mathbf{w}_{new} = \mathbf{w}_{old} + \Delta \mathbf{w}$$

 $\Delta \mathbf{w} = \eta y \mathbf{x}$ "neurons that fire together wire together."

$$\Delta \mathbf{w} = \eta y \mathbf{x} - \lambda \mathbf{w}$$
 Adding Stable Term

In particular, the term λ can be chosen in the form

$$\Delta \mathbf{w} = \eta y \mathbf{x} - \eta y \mathbf{w} = \eta y (\mathbf{x} - \mathbf{w})$$

In a complex neural network, we need a strategy to prevent neurons from learning redundant information.

The Hebbian PCA learning rule is obtained by minimizing the representation error loss function, defined as:

$$L(\mathbf{w_i}) = E[(\mathbf{x} - \sum_{j=1}^{i} y_j \, \mathbf{w_j})^2]$$

The classification layer is Input Input placed on top of the various internal layers (*L*1; 5x5 Conv. 96 5x5 Conv, 96 ReLU ReLU :::; *L*5) Layer 1 Layer 1 2x2 Max Pool 2x2 Max Pool Batch Norm Batch Norm Flat 3x3 Conv. 128 3x3 Conv. 128 Layer 2 ReLU Layer 2 ReLU Batch Norm Classifier Batch Norm 1 output per class 3x3 Conv, 19/2 3x3 Conv. 192 ReLU Layer 3 ReLU 2x2 Max Pool Layer 3 2x2 Max Pool Batch Norm Batch Norm $\lambda = \eta y$ 3x3 Conv. 256 Layer 4 3x3 Conv, 256 Batch Norm ReLU Layer 4 Batch Norm Flat Flat FC. 4096 ReLU Layer 5 FC. 4096 Batch Norm ReLU Dropout Layer 5 Batch Norm Dropout Classifier Layer 6 1 output per class Classifier Layer 6 1 output per class

Figure 4: A neural network is cut in correspondence of layer 1, and a linear classifier is placed on top of the features extracted from that layer, in order to evaluate their quality in classification tasks.

: 1: The neural network used for the experiments.

Comparison Table(CIFAR10)

Table 1: CIFAR10 accuracy (top-1) and 95% confidence intervals, obtained with a linear classifier on top of various layers, for the various sample efficiency regimes. Results obtained with supervised backprop (BP), VAE-based semisupervised approach(VAE), Hebbian PCA (HPCA), and HPCA plus Fine Tuning (HPCA+FT) are compared. It is possible to observe that, in regimes where the number of available samples is low (roughly between 1% and 5% of the total available samples), HPCA performs better than BP and VAE approaches in almost all the cases, leading to an improvement up to almost 5% (on layer 3, in the 1% regime) w.r.t. non-Hebbian approaches. HPCA+FT helps to further boost accuracy.

Regime: r%- where the percentage of labeled samples is r%

BP 33.27 ±0.44 34.56 ±0.34 36.80 ±0.52 35.47 ±0.58 VAE 33.54 ±0.27 34.41 ±0.84 29.92 ±1.25 24.91 ±0.66 HPCA 36.78 ±0.46 37.26 ±0.14 41.31 ±0.57 39.33 ±0.72 HPCA+FT 37.01 ±0.42 37.65 ±0.19 41.88 ±0.53 40.06 ±0.65 WAE 37.65 ±0.35 39.11 ±0.40 36.52 ±0.47 29.39 ±0.32 HPCA 41.13 ±0.30 41.63 ±0.18 45.76 ±0.41 44.70 ±0.45 HPCA+FT 41.60 ±0.28 42.12 ±0.24 46.56 ±0.38 45.61 ±0.19 41.84 ±0.87 45.61 ±0.19 41.89 ±0.17 47.70 ±0.57 HPCA+FT 44.74 ±0.08 45.61 ±0.18 44.60 ±0.87 31.91 ±0.44 44.60 ±0.87 31.91 ±0.44 44.60 ±0.48 44.84 ±0.08 48.92 ±0.17 47.70 ±0.57 HPCA+FT 44.74 ±0.08 45.61 ±0.18 49.51 ±0.49 48.96 ±0.48 49.51 ±0.49 48.96 ±0.48 49.51 ±0.49 48.96 ±0.48 49.51 ±0.49 48.96 ±0.48 49.51 ±0.49 48.96 ±0.48 49.51 ±0.49 48.96 ±0.48 49.51 ±0.49 48.96 ±0.48 49.51 ±0.49 49.51 ±0.55 ±0.29 49.45 ±0.15 HPCA+FT 47.10 ±0.25 48.26 ±0.09 52.00 ±0.16 51.05 ±0.29 49.45 ±0.15 HPCA+FT 47.10 ±0.25 48.26 ±0.09 52.00 ±0.16 51.05 ±0.29 49.45 ±0.15 HPCA+FT 48.49 ±0.44 50.14 ±0.46 53.33 ±0.52 52.49 ±0.16 49.45 ±0.15 HPCA+FT 48.49 ±0.44 50.14 ±0.46 53.33 ±0.52 52.26 ±1.08 HPCA 52.57 ±0.29 53.29 ±0.25 56.09 ±0.38 54.24 ±0.28 HPCA+FT 54.36 ±0.32 56.08 ±0.28 56.63 ±0.17 68.04 ±0.03 HPCA+FT 54.36 ±0.32 56.08 ±0.28 56.63 ±0.17 68.04 ±0.03 HPCA+FT 54.36 ±0.32 56.08 ±0.28 58.46 ±0.15 56.54 ±0.23 HPCA+FT 54.36 ±0.32 56.08 ±0.28 58.46 ±0.15 56.54 ±0.23 HPCA+FT 54.36 ±0.26 65.25 ±0.16 64.71 ±0.17 62.43 ±0.13 40.06 40.06 40.06 40.06 40.06 40.07	M
HPCA	
HPCA+FT 37.01 ±0.42 37.65 ±0.19 41.88 ±0.53 40.06 ±0.65 BP	1
BP 37.33 ±0.25 39.01 ±0.19 42.34 ±0.51 41.50 ±0.32 VAE 37.65 ±0.35 39.13 ±0.40 36.52 ±0.47 29.39 ±0.32 HPCA 41.13 ±0.30 41.63 ±0.18 45.76 ±0.41 44.70 ±0.45 HPCA+FT 41.60 ±0.28 42.12 ±0.24 46.56 ±0.38 45.61 ±0.19 BP 40.49 ±0.26 41.90 ±0.40 45.13 ±0.53 45.26 ±0.22 3% VAE 41.22 ±0.27 43.16 ±0.44 42.60 ±0.87 31.91 ±0.44 HPCA 44.16 ±0.42 44.84 ±0.08 48.92 ±0.17 47.70 ±0.57 HPCA+FT 44.74 ±0.08 45.61 ±0.28 49.75 ±0.41 48.94 ±0.45 BP 43.38 ±0.22 45.43 ±0.18 49.51 ±0.49 48.96 ±0.48 4% VAE 44.39 ±0.30 45.88 ±0.39 46.01 ±0.40 34.26 ±0.21 HPCA 46.37 ±0.16 47.16 ±0.28 50.70 ±0.26 49.45 ±0.15 HPCA+FT 47.10 ±0.25 48.26 ±0.09 52.00 ±0.16 51.05 ±0.29 5% BP 45.11 ±0.21 47.57 ±0.29 50.61 ±0.32 50.54 ±0.23 HPCA 47.51 ±0.65 48.69 ±0.37 51.69 ±0.56 50.44 ±0.43 HPCA+FT 48.49 ±0.44 50.14 ±0.46 53.33 ±0.52 52.49 ±0.16 BP 51.60 ±0.40 54.60 ±0.31 57.97 ±0.28 57.63 ±0.23 HPCA 52.57 ±0.29 53.29 ±0.25 56.09 ±0.38 54.24 ±0.28 HPCA+FT 54.36 ±0.32 56.08 ±0.28 58.46 ±0.15 56.54 ±0.23 BP 60.43 ±0.26 64.96 ±0.18 66.63 ±0.17 68.04 ±0.05 VAE 62.51 ±0.24 67.26 ±0.32 68.48 ±0.21 68.79 ±0.29 HPCA 58.30 ±0.28 59.20 ±0.24 59.98 ±0.20 57.54 ±0.20 HPCA+FT 61.45 ±0.26 65.25 ±0.16 64.71 ±0.17 62.43 ±0.13 BP 61.59 ±0.08 67.67 ±0.11 73.87 ±0.15 83.88 ±0.04	Н
2% VAE 37.65 ±0.35 39.13 ±0.40 36.52 ±0.47 29.39 ±0.32 HPCA 41.13 ±0.30 41.63 ±0.18 45.76 ±0.41 44.70 ±0.45 HPCA+FT 41.60 ±0.28 42.12 ±0.24 46.56 ±0.38 45.61 ±0.19 3% PAR 40.49 ±0.26 41.90 ±0.40 45.13 ±0.53 45.26 ±0.22 3% VAE 41.22 ±0.27 43.16 ±0.44 42.60 ±0.87 31.91 ±0.44 HPCA 44.16 ±0.42 44.84 ±0.08 48.92 ±0.17 47.70 ±0.57 HPCA+FT 44.74 ±0.08 45.61 ±0.28 49.75 ±0.41 48.94 ±0.45 4% PAR 44.74 ±0.08 45.61 ±0.28 49.75 ±0.41 48.96 ±0.48 4% VAE 44.39 ±0.30 45.88 ±0.39 46.01 ±0.40 34.26 ±0.21 HPCA 46.37 ±0.16 47.16 ±0.28 50.70 ±0.26 49.45 ±0.15 HPCA+FT 47.10 ±0.25 48.26 ±0.09 52.00 ±0.16 51.05 ±0.29 5% VAE 46.31 ±0.39 48.21 ±0.21 48.98 ±0.34 36.32 ±0.35 HPCA	HPO
HPCA	
HPCA+FT	1
BP	Н
VAE	HPO
HPCA	
HPCA+FT 44.74 ±0.08 45.61 ±0.28 49.75 ±0.41 48.94 ±0.45 BP 43.38 ±0.22 45.43 ±0.18 49.51 ±0.49 48.96 ±0.48 VAE 44.39 ±0.30 45.88 ±0.39 46.01 ±0.40 34.26 ±0.21 HPCA 46.37 ±0.16 47.16 ±0.28 50.70 ±0.26 49.45 ±0.15 HPCA+FT 47.10 ±0.25 48.26 ±0.09 52.00 ±0.16 51.05 ±0.29 BP 45.11 ±0.21 47.57 ±0.29 50.61 ±0.32 50.54 ±0.23 VAE 46.31 ±0.39 48.21 ±0.21 48.98 ±0.34 36.32 ±0.35 HPCA 47.51 ±0.65 48.69 ±0.37 51.69 ±0.56 50.44 ±0.43 HPCA+FT 48.49 ±0.44 50.14 ±0.46 53.33 ±0.52 52.49 ±0.16 BP 51.60 ±0.40 54.60 ±0.31 57.97 ±0.28 57.63 ±0.23 VAE 53.83 ±0.26 56.33 ±0.22 57.85 ±0.22 52.26 ±1.08 HPCA 52.57 ±0.29 53.29 ±0.25 56.09 ±0.38 54.24 ±0.28 HPCA+FT 54.36 ±0.32 56.08 ±0.28 58.46 ±0.15 56.54 ±0.23 BP 60.43 ±0.26 64.96 ±0.18 66.63 ±0.17 68.04 ±0.05 VAE 62.51 ±0.24 67.26 ±0.32 68.48 ±0.21 68.79 ±0.29 HPCA 58.30 ±0.28 59.20 ±0.24 59.98 ±0.20 57.54 ±0.20 HPCA+FT 61.45 ±0.26 65.25 ±0.16 64.71 ±0.17 62.43 ±0.13 BP 61.59 ±0.08 67.67 ±0.11 73.87 ±0.15 83.88 ±0.04	1
## BP ## 43.38 ±0.22 ## 45.43 ±0.18 ## 49.51 ±0.49 ## 48.96 ±0.48 ## VAE ## 44.39 ±0.30 ## 45.88 ±0.39 ## 46.01 ±0.40 ## 34.26 ±0.21 ## AF	Н
4% VAE 44.39 ±0.30 45.88 ±0.39 46.01 ±0.40 34.26 ±0.21 HPCA 46.37 ±0.16 47.16 ±0.28 50.70 ±0.26 49.45 ±0.15 HPCA+FT 47.10 ±0.25 48.26 ±0.09 52.00 ±0.16 51.05 ±0.29 BP 45.11 ±0.21 47.57 ±0.29 50.61 ±0.32 50.54 ±0.23 5% VAE 46.31 ±0.39 48.21 ±0.21 48.98 ±0.34 36.32 ±0.35 HPCA 47.51 ±0.65 48.69 ±0.37 51.69 ±0.56 50.44 ±0.43 HPCA+FT 48.49 ±0.44 50.14 ±0.46 53.33 ±0.52 52.49 ±0.16 BP 51.60 ±0.40 54.60 ±0.31 57.97 ±0.28 57.63 ±0.23 VAE 53.83 ±0.26 56.33 ±0.22 57.85 ±0.22 52.26 ±1.08 HPCA 52.57 ±0.29 53.29 ±0.25 56.09 ±0.38 54.24 ±0.28 HPCA+FT 54.36 ±0.32 56.08 ±0.28 58.46 ±0.15 56.54 ±0.23 BP 60.43 ±0.26 64.96 ±0.18 66.63 ±0.17 68.04 ±0.05 VAE 62.51 ±0.24 67.26 ±0.32 68.48 ±0.21	HPO
HPCA 46.37 ±0.16 47.16 ±0.28 50.70 ±0.26 49.45 ±0.15 HPCA+FT 47.10 ±0.25 48.26 ±0.09 52.00 ±0.16 51.05 ±0.29 BP 45.11 ±0.21 47.57 ±0.29 50.61 ±0.32 50.54 ±0.23 VAE 46.31 ±0.39 48.21 ±0.21 48.98 ±0.34 36.32 ±0.35 HPCA 47.51 ±0.65 48.69 ±0.37 51.69 ±0.56 50.44 ±0.43 HPCA+FT 48.49 ±0.44 50.14 ±0.46 53.33 ±0.52 52.49 ±0.16 BP 51.60 ±0.40 54.60 ±0.31 57.97 ±0.28 57.63 ±0.23 VAE 53.83 ±0.26 56.33 ±0.22 57.85 ±0.22 52.26 ±1.08 HPCA 52.57 ±0.29 53.29 ±0.25 56.09 ±0.38 54.24 ±0.28 HPCA+FT 54.36 ±0.32 56.08 ±0.28 58.46 ±0.15 56.54 ±0.23 BP 60.43 ±0.26 64.96 ±0.18 66.63 ±0.17 68.04 ±0.05 VAE 62.51 ±0.24 67.26 ±0.32 68.48 ±0.21 68.79 ±0.29 HPCA 58.30 ±0.28 59.20 ±0.24 59.98 ±0.20 57.54 ±0.20 HPCA+FT 61.45 ±0.26 65.25 ±0.16 64.71 ±0.17 62.43 ±0.13 BP 61.59 ±0.08 67.67 ±0.11 73.87 ±0.15 83.88 ±0.04	
HPCA+FT	1
BP 45.11 ±0.21 47.57 ±0.29 50.61 ±0.32 50.54 ±0.23 VAE 46.31 ±0.39 48.21 ±0.21 48.98 ±0.34 36.32 ±0.35 HPCA 47.51 ±0.65 48.69 ±0.37 51.69 ±0.56 50.44 ±0.43 HPCA+FT 48.49 ±0.44 50.14 ±0.46 53.33 ±0.52 52.49 ±0.16 BP 51.60 ±0.40 54.60 ±0.31 57.97 ±0.28 57.63 ±0.23 VAE 53.83 ±0.26 56.33 ±0.22 57.85 ±0.22 52.26 ±1.08 HPCA 52.57 ±0.29 53.29 ±0.25 56.09 ±0.38 54.24 ±0.28 HPCA+FT 54.36 ±0.32 56.08 ±0.28 58.46 ±0.15 56.54 ±0.23 25% VAE 62.51 ±0.24 67.26 ±0.32 68.48 ±0.21 68.79 ±0.29 HPCA 58.30 ±0.28 59.20 ±0.24 59.98 ±0.20 57.54 ±0.20 HPCA+FT 61.45 ±0.26 65.25 ±0.16 64.71 ±0.17 62.43 ±0.13 BP 61.59 ±0.08 67.67 ±0.11 73.87 ±0.15 83.88 ±0.04	Н
5% VAE 46.31 ±0.39 48.21 ±0.21 48.98 ±0.34 36.32 ±0.35 HPCA 47.51 ±0.65 48.69 ±0.37 51.69 ±0.56 50.44 ±0.43 HPCA+FT 48.49 ±0.44 50.14 ±0.46 53.33 ±0.52 52.49 ±0.16 BP 51.60 ±0.40 54.60 ±0.31 57.97 ±0.28 57.63 ±0.23 VAE 53.83 ±0.26 56.33 ±0.22 57.85 ±0.22 52.26 ±1.08 HPCA 52.57 ±0.29 53.29 ±0.25 56.09 ±0.38 54.24 ±0.28 HPCA+FT 54.36 ±0.32 56.08 ±0.28 58.46 ±0.15 56.54 ±0.23 25% BP 60.43 ±0.26 64.96 ±0.18 66.63 ±0.17 68.04 ±0.05 VAE 62.51 ±0.24 67.26 ±0.32 68.48 ±0.21 68.79 ±0.29 HPCA 58.30 ±0.28 59.20 ±0.24 59.98 ±0.20 57.54 ±0.20 HPCA+FT 61.45 ±0.26 65.25 ±0.16 64.71 ±0.17 62.43 ±0.13 BP 61.59 ±0.08 67.67 ±0.11 73.87 ±0.15 83.88 ±0.04	HPO
HPCA 47.51 ±0.65 48.69 ±0.37 51.69 ±0.56 50.44 ±0.43 HPCA+FT 48.49 ±0.44 50.14 ±0.46 53.33 ±0.52 52.49 ±0.16 BP 51.60 ±0.40 54.60 ±0.31 57.97 ±0.28 57.63 ±0.23 VAE 53.83 ±0.26 56.33 ±0.22 57.85 ±0.22 52.26 ±1.08 HPCA 52.57 ±0.29 53.29 ±0.25 56.09 ±0.38 54.24 ±0.28 HPCA+FT 54.36 ±0.32 56.08 ±0.28 58.46 ±0.15 56.54 ±0.23 BP 60.43 ±0.26 64.96 ±0.18 66.63 ±0.17 68.04 ±0.05 VAE 62.51 ±0.24 67.26 ±0.32 68.48 ±0.21 68.79 ±0.29 HPCA 58.30 ±0.28 59.20 ±0.24 59.98 ±0.20 57.54 ±0.20 HPCA+FT 61.45 ±0.26 65.25 ±0.16 64.71 ±0.17 62.43 ±0.13 BP 61.59 ±0.08 67.67 ±0.11 73.87 ±0.15 83.88 ±0.04	
HPCA+FT	
BP 51.60 ±0.40 54.60 ±0.31 57.97 ±0.28 57.63 ±0.23 VAE 53.83 ±0.26 56.33 ±0.22 57.85 ±0.22 52.26 ±1.08 HPCA 52.57 ±0.29 53.29 ±0.25 56.09 ±0.38 54.24 ±0.28 HPCA+FT 54.36 ±0.32 56.08 ±0.28 58.46 ±0.15 56.54 ±0.23 BP 60.43 ±0.26 64.96 ±0.18 66.63 ±0.17 68.04 ±0.05 VAE 62.51 ±0.24 67.26 ±0.32 68.48 ±0.21 68.79 ±0.29 HPCA 58.30 ±0.28 59.20 ±0.24 59.98 ±0.20 57.54 ±0.20 HPCA+FT 61.45 ±0.26 65.25 ±0.16 64.71 ±0.17 62.43 ±0.13 BP 61.59 ±0.08 67.67 ±0.11 73.87 ±0.15 83.88 ±0.04	Н
10% VAE 53.83 ±0.26 56.33 ±0.22 57.85 ±0.22 52.26 ±1.08 HPCA 52.57 ±0.29 53.29 ±0.25 56.09 ±0.38 54.24 ±0.28 HPCA+FT 54.36 ±0.32 56.08 ±0.28 58.46 ±0.15 56.54 ±0.23 BP 60.43 ±0.26 64.96 ±0.18 66.63 ±0.17 68.04 ±0.05 VAE 62.51 ±0.24 67.26 ±0.32 68.48 ±0.21 68.79 ±0.29 HPCA 58.30 ±0.28 59.20 ±0.24 59.98 ±0.20 57.54 ±0.20 HPCA+FT 61.45 ±0.26 65.25 ±0.16 64.71 ±0.17 62.43 ±0.13 BP 61.59 ±0.08 67.67 ±0.11 73.87 ±0.15 83.88 ±0.04	HPO
HPCA 52.57 ±0.29 53.29 ±0.25 56.09 ±0.38 54.24 ±0.28 HPCA+FT 54.36 ±0.32 56.08 ±0.28 58.46 ±0.15 56.54 ±0.23 BP 60.43 ±0.26 64.96 ±0.18 66.63 ±0.17 68.04 ±0.05 VAE 62.51 ±0.24 67.26 ±0.32 68.48 ±0.21 68.79 ±0.29 HPCA 58.30 ±0.28 59.20 ±0.24 59.98 ±0.20 57.54 ±0.20 HPCA+FT 61.45 ±0.26 65.25 ±0.16 64.71 ±0.17 62.43 ±0.13 BP 61.59 ±0.08 67.67 ±0.11 73.87 ±0.15 83.88 ±0.04	
HPCA+FT 54.36 ±0.32 56.08 ±0.28 58.46 ±0.15 56.54 ±0.23 BP 60.43 ±0.26 64.96 ±0.18 66.63 ±0.17 68.04 ±0.05 VAE 62.51 ±0.24 67.26 ±0.32 68.48 ±0.21 68.79 ±0.29 HPCA 58.30 ±0.28 59.20 ±0.24 59.98 ±0.20 57.54 ±0.20 HPCA+FT 61.45 ±0.26 65.25 ±0.16 64.71 ±0.17 62.43 ±0.13 BP 61.59 ±0.08 67.67 ±0.11 73.87 ±0.15 83.88 ±0.04	1
BP 60.43 ±0.26 64.96 ±0.18 66.63 ±0.17 68.04 ±0.05 VAE 62.51 ±0.24 67.26 ±0.32 68.48 ±0.21 68.79 ±0.29 HPCA 58.30 ±0.28 59.20 ±0.24 59.98 ±0.20 57.54 ±0.20 HPCA+FT 61.45 ±0.26 65.25 ±0.16 64.71 ±0.17 62.43 ±0.13 BP 61.59 ±0.08 67.67 ±0.11 73.87 ±0.15 83.88 ±0.04	
25% VAE 62.51 ±0.24 67.26 ±0.32 68.48 ±0.21 68.79 ±0.29 HPCA 58.30 ±0.28 59.20 ±0.24 59.98 ±0.20 57.54 ±0.20 HPCA+FT 61.45 ±0.26 65.25 ±0.16 64.71 ±0.17 62.43 ±0.13 BP 61.59 ±0.08 67.67 ±0.11 73.87 ±0.15 83.88 ±0.04	HPO
HPCA 58.30 ±0.28 59.20 ±0.24 59.98 ±0.20 57.54 ±0.20 HPCA+FT 61.45 ±0.26 65.25 ±0.16 64.71 ±0.17 62.43 ±0.13 BP 61.59 ±0.08 67.67 ±0.11 73.87 ±0.15 83.88 ±0.04	
HPCA+FT 61.45 ±0.26 65.25 ±0.16 64.71 ±0.17 62.43 ±0.13 BP 61.59 ±0.08 67.67 ±0.11 73.87 ±0.15 83.88 ±0.04	1
BP 61.59 ±0.08 67.67 ±0.11 73.87 ±0.15 83.88 ±0.04	Н
	HPO
100% VAE 67.53 ±0.22 75.83 ±0.31 80.78 ±0.28 84.27 ±0.35	
	1
HPCA 64.69 ±0.29 65.92 ±0.14 64.43 ±0.21 61.24 ±0.22	Н
HPCA+FT 66.76 ±0.13 75.16 ±0.20 79.90 ±0.18 83.55 ±0.33	HPO

(4) Greedy InfoMax for Self-Supervised Representation Learning(GIM) Sindy Lowe et al. University of Amsterdam

Highlights

- 1. we propose a novel deep learning method for local self-supervised representation learning that does not require labels nor end-to-end backpropagation but exploits the natural order in data instead.
- Inspired by the observation that biological neural networks appear to learn without backpropagating a global error signal, we split a deep neural network into a stack of gradient-isolated modules.
- 3. Each module is trained to maximize the mutual information between its consecutive outputs using the InfoNCE bound from Oord et al.(2018).

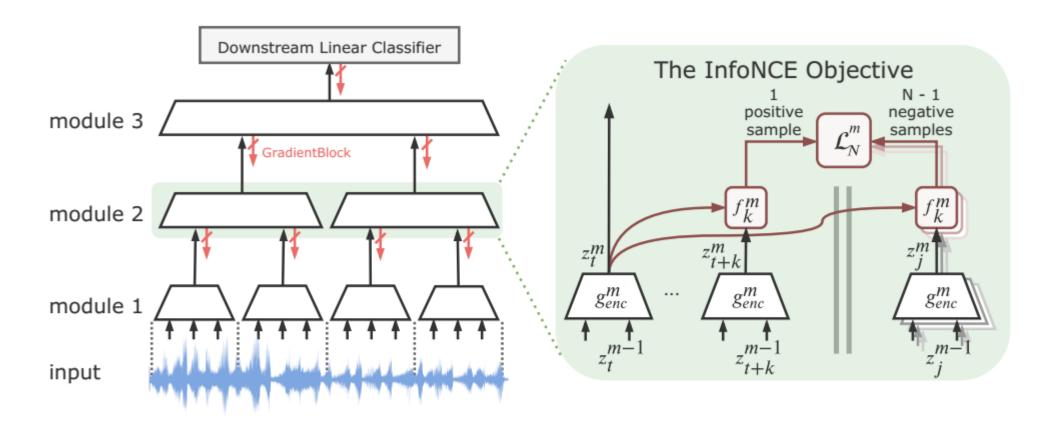


Figure 1. The Greedy InfoMax Learning Approach. (**Left**) For the self-supervised learning of representations, we stack a number of modules through which the input is forward-propagated in the usual way, but gradients do not propagate backwards. Instead, every module is trained greedily using a local loss. (**Right**) Every encoding module maps its inputs z_t^{m-1} at time-step t to $g_{enc}^m(\text{GradientBlock}(z_t^{m-1})) = z_t^m$, which is used as the input for the following module. The InfoNCE objective is used for its greedy optimization. This loss is calculated by contrasting the predictions of a module for its future representations z_{t+k}^m against negative samples z_j^m , which enforces each module to maximally preserve the information of its inputs. We employ an additional autoregressive module g_{ar} , which is not depicted here.

Architecture & Comparison

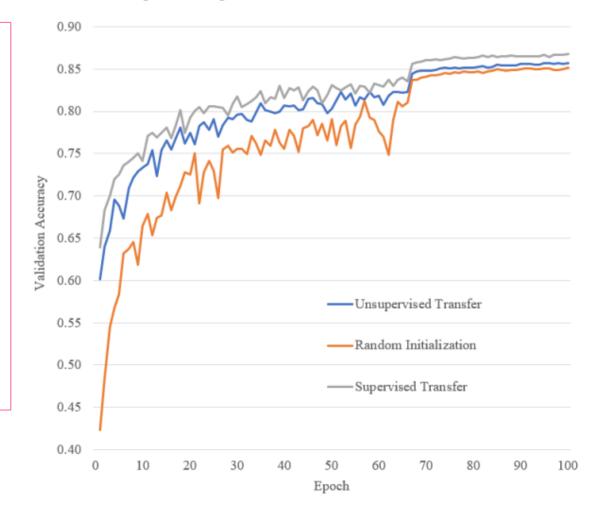
Table 3. General outline of our architecture

Layer	Output Size	Parameters		
	(Sequence Length × Channels)	Kernel	Stride	Padding
Input	20480×1			
Conv1	$4095^2 \times 512$	10	5	2
Conv2	$1023^2 \times 512$	8	4	2
Conv3	$512^{2} \times 512$	4	2	2
Conv4	$257^{2} \times 512$	4	2	2
Conv5	128×512	1	2	1
GRU	128×256	-	-	-

²For applying the InfoNCE objective on these layers, we randomly sample a time-window of size 128 to decrease the dimensionality.

Table 1. Results for classifying speaker identity and phone labels in the LibriSpeech dataset. All models use the same audio input sizes and the same architecture. GIM creates representations that are useful for audio classification tasks despite its greedy training and lack of a global objective.

Method	Phone Classification Accuracy	Speaker Classification Accuracy
MFCC features	39.7%	17.6%
Randomly initialized	27.6%	1.9%
Supervised	74.6%	98.5%
Greedy Supervised	71.1%	84.5%
CPC (Oord et al., 2018) ^a	64.6%	97.4%
Greedy InfoMax (GIM)	60.0%	97.5%


^aIn our reimplementation, we achieved 62.2% for the phone and 98.8% for the speaker classification task.

(5)Layer-Wise Contrastive Unsupervised Representation Learning

Stephen Zhao, 2019

- In this work, we focus on the set of unsupervised learning approaches that Arora et al. (2019) call "contrastive unsupervised representation learning".
- We use a layer-wise adaptation, starting within the context of images.
- We train feature representations of semantically similar images (i.e. nearby patches within the same image) to be closer than that of unrelated images (e.g. random patches), to learn convolutional neural network filters from unlabeled data.

Figure 3: Performance on CIFAR-10. The learning rate is 0.001 for the first two-thirds of the training, and is 0.0001 afterwards. Results are averaged over 3 independent runs for each line (keeping transferred filters constant across runs, but allowing for fine-tuning).

(6) LoCo: Local Contrastive Representation Learning

Yuwen Xiong et al.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

- In this work, we discover that by overlapping local blocks stacking on top of each other, we effectively increase the decoder depth and allow upper blocks to implicitly send feedbacks to lower blocks.
- This simple design closes the performance gap between local learning and end-to-end contrastive learning algorithms for the first time.
- Aside from standard ImageNet experiments, we also show results on complex downstream tasks such as object detection and instance segmentation directly using readout features

LoCo Architecture

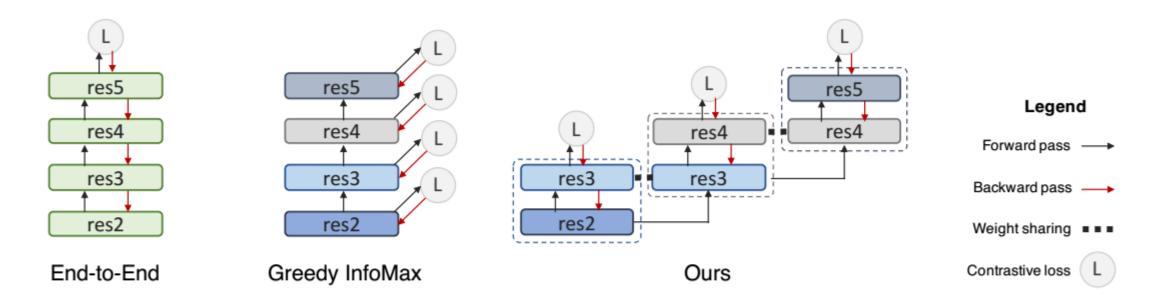


Figure 1: Comparison between End-to-End, Greedy InfoMax (GIM) and LoCo

In this paper, we used SimCLR as our main baseline, since it has superior performance on ImageNet, and we apply the changes proposed in GIM(Greedy Infomax) on top of SimCLR as our local learning baseline.

In our experiments, we find that simply applying GIM on SimCLR results in a significant loss in performance and in the next section we will explain our techniques to bridge the performance gap.

Comparison tables

Method	Architecture	Acc.	Local
Local Agg. 62	ResNet-50	60.2	
MoCo 22	ResNet-50	60.6	
PIRL 45	ResNet-50	63.6	
CPC v2 56	ResNet-50	63.8	
SimCLR* [11]	ResNet-50	69.3	
SimCLR [11]	ResNet-50	69.8	
GIM [39]	ResNet-50	64.7	✓
LoCo (Ours)	ResNet-50	69.5	✓
SimCLR [11]	ShuffleNet v2-50	69.1	
GIM [39]	ShuffleNet v2-50	63.5	✓
LoCo (Ours)	ShuffleNet v2-50	69.3	✓

Table 1: ImageNet accuracies of linear classifiers trained on representations learned with different unsupervised methods, SimCLR* is the result from the SimCLR paper with 1000 training epochs.

Greedy InfoMax (GIM)

SimCLR: T. Chen... A simple framework for contrastive learning of visual representations, 2020.

Method	Arch	COCO		Cityscapes	
Method	Arch	APbb	AP	APbb	AP
Supervised	R-50	33.9	31.3	33.2	27.1
	В	Backbone weig	hts with 100 E	pochs	
SimCLR	R-50	32.2	29.9	33.2	28.6
GIM	R-50	27.7 (-4.5)	25.7 (-4.2)	30.0 (-3.2)	24.6 (-4.0)
Ours	R-50	32.6 (+0.4)	30.1 (+0.2)	33.2 (+0.0)	28.4 (-0.2)
SimCLR	Sh-50	32.5	30.1	33.3	28.0
GIM	Sh-50	27.3 (-5.2)	25.4 (-4.7)	29.1 (-4.2)	23.9 (-4.1)
Ours	Sh-50	31.8 (-0.7)	29.4 (-0.7)	33.1 (-0.2)	27.7 (-0.3)
	В	Backbone weig	hts with 800 E	pochs	
SimCLR	R-50	34.8	32.2	34.8	30.1
GIM	R-50	29.3 (-5.5)	27.0 (-5.2)	30.7 (-4.1)	26.0 (-4.1)
Ours	R-50	34.5 (-0.3)	32.0 (-0.2)	34.2 (-0.6)	29.5 (-0.6)
SimCLR	Sh-50	33.4	30.9	33.9	28.7
GIM	Sh-50	28.9 (-4.5)	26.9 (-4.0)	29.6 (-4.3)	23.9 (-4.8)
Ours	Sh-50	33.6 (+0.2)	31.2 (+0.3)	33.0 (-0.9)	28.1 (-0.6)

Table 2: Mask R-CNN results on COCO and Cityscapes. Backbone networks are frozen. "R-50" denotes ResNet-50 and "Sh-50" denotes ShuffleNet v2-50.

Average Precision (AP)

Average Precision bounding box (APbb)

(7) Progressive Stage-wise Learning for Unsupervised Feature Representation Enhancement

Zefan Li et al., Shanghai Jiao Tong University

In this work, we explore new dimensions of unsupervised learning by proposing the **P**rogressive **S**tage-wise **L**earning (**PSL**) framework.

For a given unsupervised task, we design multilevel tasks and define different learning stages for the deep *network*. (Each new task has overlap with the former one)

Early learning stages are forced to focus on low-level tasks while late stages are guided to extract deeper information through harder tasks.

We discover that by progressive stage-wise learning, unsupervised feature representation can be effectively enhanced.

Our extensive experiments show that PSL consistently improves results for the leading unsupervised learning methods.

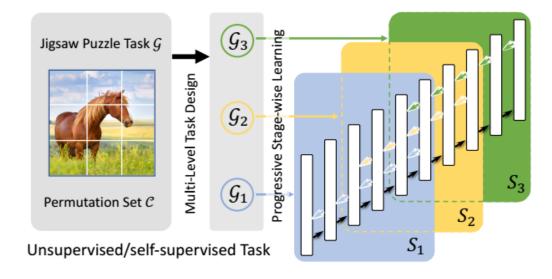


Figure 1. We present the framework of the proposed Progressive Stage-wise Learning (**PSL**) algorithm, aiming for improving unsupervised/self-supervised task. We take the jigsaw puzzle task \mathcal{G} for example. We first do multi-level task partition $\mathcal{G} \to \{\mathcal{G}_1, \mathcal{G}_2, \mathcal{G}_3\}$ with an increased task complexity and perform progressive stage-wise training for different learning stages of the network. The black arrow denotes forward pass while colored arrow represents the backward pass of each learning stage (i.e., S_1 , S_2 , and S_3).

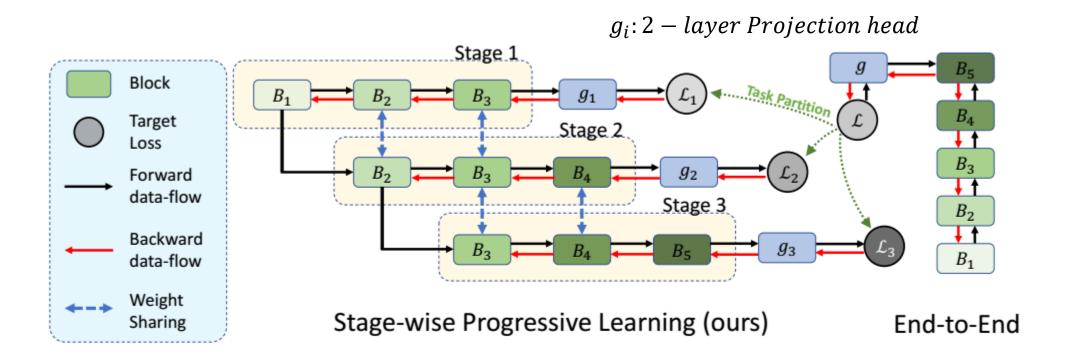


Figure 2. We present the detail of the proposed Stage-wise Progressive Learning framework. In the right is the end-to-end learning scheme while we present PSL in the middle. g and $\{g_i\}_{i=1}^3$ are projection heads, mapping the intermediate representation to the target feature space. After the training is completed, we throw away the projection heads and use the backbone network for downstream tasks.

Comparison Tables

Task	1% labels	10% labels
Supervised	48.4	80.4
Jigsaw [38]	45.4	79.6
Jigsaw+PSL	48.7	83.5
Rotation [21]	52.1	82.5
Rotation+PSL	54.8	83.7

Table 7. **Semi-supervised learning on ImageNet.** We use ResNet-50 as our backbone networks and report single-crop top-5 accuracy on the ImageNet validation set. All models are self-supervised trained on ImageNet and finetuned on 1% and 10% of the ImageNet training data, following [46, 37]. The supervised results are presented for reference.

Method	Arch	# Param(M)	Top 1
Colorization [49]	R50	24	39.6
BigBiGAN [15]	R50	24	56.6
LA [51]	R50	24	58.8
NPID++ [37]	R50	24	59.0
MoCo [26]	R50	24	60.6
PIRL [37]	R50	24	63.6
CPC v2 [28]	R50	24	63.8
PCL [34]	R50	24	65.9
SwAV [9]	R50	24	75.3
Jigsaw [38]	R50	24	45.7
Jigsaw +PSL	R50	24	50.9
Rotation [21]	Rv50w4×	86	47.3
Rotation*	Rv50	24	48.6
Rotation+PSL	Rv50	24	53.3
SimCLR [10]	R50	24	61.9
SimCLR+PSL	R50	24	64.3
MoCov2 [11]	R50	24	67.5
MoCov2+PSL	R50	24	68.1

Table 4. ImageNet accuracy of linear classifiers trained on self-supervised learned representations. All are reported as unsupervised pre-training on ImageNet, followed by supervised linear classification and evaluated on the ImageNet validation set. Note that Rotation [21] uses \mathcal{R}_2 as the transformation set while Rotation* uses \mathcal{R}_3 as the transformation set. SimCLR results are obtained by 200 training epochs with batchsize 256.

End of Chapter 3